PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Control system of the grid-connected converter based on a state current regulator with oscillatory terms

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Układ sterowania przekształtnikiem sieciowym wykorzystujący regulator stanu ze sprzężeniem od prądów i sygnałów z członów oscylacyjnych
Języki publikacji
EN
Abstrakty
EN
This paper presents a state-feedback current controller with oscillatory terms for three-phase grid-connected PWM converters. Use of the oscillatory terms allows for shaping the sinusoidal input currents of the converter under distorted grid voltage conditions. Linear-quadratic optimization method is used to calculate the current controller gains. In the converter control structure the state current controller and PI DC-link voltage controller are used. Mathematical analysis and simulation results of the proposed control system are presented and discussed.
W artykule przedstawiono regulator prądu ze sprzężeniem od wektora stanu z rozszerzeniem o człony oscylacyjne opracowany dla trójfazowych przekształtników sieciowych PWM.Wykorzystanie członów oscylacyjnych pozwala na kształtowanie sinusoidalnego prądu wejściowego prostownika przy odkształconym napięciu sieci. Współczynniki wzmocnień regulatora prądu obliczono z wykorzystaniem optymalizacji liniowo-kwadratowej. W strukturze sterowania przekształtnikiem zastosowano opracowany regulator prądu oraz regulator PI napięcia DC-linku. Przedstawiono analizę matematyczną i omówiono wyniki badań symulacyjnych.
Rocznik
Strony
65--69
Opis fizyczny
Bibliogr. 28 poz., rys., tab., wykr.
Twórcy
autor
  • Institute of Control and Industrial Electronics, Faculty of Electrical Engineering, Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warszawa, Poland
autor
  • Institute of Control and Industrial Electronics, Faculty of Electrical Engineering, Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warszawa, Poland
  • Institute of Control and Industrial Electronics, Faculty of Electrical Engineering, Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warszawa, Poland
autor
  • Institute of Control and Industrial Electronics, Faculty of Electrical Engineering, Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warszawa, Poland
Bibliografia
  • [1] Malinowski M., Kazmierkowski M., Trzynadlowski A., A comparative study of control techniques for PWM rectifiers in AC adjustable speed drives, IEEE Transaction on Power Electronics, 18 (2003), n. 6, 1390–1396
  • [2] Sedlak M., Stynski S., Kazmierkowski M.P., Malinowski M., Three-level four-leg flying capacitor converter for renewable energy sources, Przeglad Elektrotechniczny (Electrical Review), 12a (2012), n. 2, 6–11
  • [3] Pura P., Iwanski G., Direct Power Control of DFIG Connected to Unbalanced Power Grid, in proc. of 9th IEEE International Conference and Exhibition Ecological Vehicles and Renewable Energies (EVER), Monaco, 2013, 1–7
  • [4] Benysek G., Kazmierkowski M.P. Popczyk J., Strzelecki R., Power electronic systems as a crucial part of Smart Grid infrastructure – a survey, Bulletin of the Polish Academy of Sciences, Technical Sciences, 59 (2011), n. 4, 455–473
  • [5] Smolenski R., Jarnut M., Benysek G., Kempski A., AC/DC/DC interfaces for V2G applications – EMC issues, IEEE Transaction on Industrial Electronics, 60 (2013), n. 3, 930–935
  • [6] Kazmierkowski M.P., Krishnan R., Blaabjerg F., Kempski A., Control in Power Electronics, Selected Problem Academic Press, London, UK, 2002
  • [7] Alepuz S., Busquets-Monge S., Bordonau J.,Martinez-Velasco J.A., Silva C. A., Pontt J. and Rodriguez J., Control strategies based on symmetrical components for grid-connected converters under voltage dips, IEEE Transaction on Industrial Electronics, 56 (2009), n. 6, 2162–2173
  • [8] Kazmierkowski M.P., Jasinski M., Wrona G., DSP-Based Control of Grid-Connected Power Converters Operating Under Grid Distortions, IEEE Transaction on Industrial Informatics, 7 (2011), n. 2, 204–211
  • [9] Piasecki S., Jasinski M., Rafał K., Korzeniewski M., Milicua A., Higher harmonics compensation in grid-connected PWM converters for renewable energy interface and active filtering, Przegląd Elektrotechniczny, 6 (2011), 85–90
  • [10] Barote L., and Marinescu C., Teodorescu R., Current controller considering harmonics compensation for grid connected converter in DPGS applications, in proc. of 13th IEEE Conference on Optimization of Electrical and Electronic Equipment (OPTIM), Romania, 2012, 899–905
  • [11] Rodriguez J., Kazmierkowski M.P., Espinoza J.R., Zanchetta P., Abu-Rub H., Young H.A., Rojas C.A., State of the Art of Finite Control Set Model Predictive Control in Power Electronics, IEEE Trans. on Industrial Infor., 9 (2013), n. 2, 1003–1016
  • [12] Wojciechowski D., Strzelecki R., Predictive control of active filter system with LCL coupling circuit, in proc. of 9th IEEE International Power Energy Conference (IPEC), Singapore, 2010, 2276–2282
  • [13] Dannehl J., Fuchs F.W., Flatness-based voltage-oriented control of three-phase PWM rectifiers, in proc. of 13th IEEE International Power Electronics and Motion Control Conference (EPE-PEMC), Poland, 2008, 444–450
  • [14] Zhixiang Zou, Zheng Wang, Ming Cheng, Yongheng Yang, Active power filter for harmonic compensation using a digital dual-mode-structure repetitive control approach, in 3rd IEEE International Symposium on Power Electronics for Distributed Generation Systems (PEDG), Denmark, 2012, 161–166
  • [15] Dannehl J., Fuchs F.W., Thogersen P.B., PI State Space Current Control of Grid-Connected PWM Converters With LCL Filters, IEEE Trans. on Power Electr.,25 (2010), n. 9, 2320–2330
  • [16] Pena-Alzola R., Liserre M., Blaabjerg F., Sebastian R., Dannehl J., Fuchs F.W., Systematic Design of the Lead-Lag Network Method for Active Damping in LCL-Filter Based Three Phase Converters, IEEE Transaction on Industrial Informatics, 10 (2014), n. 1, 43–52
  • [17] Kedjar B., Kanaan H.Y., Al-Haddad K., Vienna Rectifier With Power Quality Added Function, IEEE Transaction on Industrial Electronics,61 (2014), n. 8, 3847–3856
  • [18] Kedjar B., Al-Haddad K., LQR with Integral Action to Enhance Dynamic Performance of Three-Phase Three-Wire Shunt Active Filter, in proc. of IEE Power Electronics Specialists Conference (PESC), USA, 2007, 1138–1144
  • [19] Kaszewski A., Ufnalski B., Grzesiak L.M., An LQ controller with disturbance feedforward for the 3-phase 4-leg true sine wave inverter, in proc. of 6th IEEE International Conference on Industrial Technology (ICIT), 2013, 1924–1930
  • [20] Kaszewski A., Ufnalski B., Grzesiak L.M., The LQ controller for the 3-phase 4-leg inverter with an LC output filter – Choosing the right reference frame, in proc. of 15th European Conference on Power Electronics and Applications (EPE), South Africa, 2013, 1–9
  • [21] Ufnalski B., Kaszewski A., Grzesiak L., Particle Swarm Optimization of the Multi-oscillatory LQR for a 3-phase 4-wire Voltage Source Inverter with an LC Output Filter, IEEE Transaction on Industrial Electronics, 2014, 1–10
  • [22] Alepuz S., Busquets S., Bordonau J., Pontt J., Silva C., Rodriguez J., Balanced grid currents in three-level voltagesource inverters connected to the utility under distorted condition using symmetrical components and linear quadratic regulator, in proc. of 12th European Conference of Power Electronics and Applications (EPE), Denmark, 2007, 1–10, 2007
  • [23] Eloy-Garcia J., Arnaltes S., Rodriguez-Amenedo J.L., Direct power control of voltage source inverters with unbalanced grid voltages, IET Power Electronics, 1 (2008), 395–407
  • [24] Marques G.D., Pires V.F., Malinowski M., Kazmierkowski M., An Improved Synchronous Reference Frame Method for Active Filters, in proc. of International Conference on "Computer as a Tool" (EUROCON), Poland, 2007, 2564–2569
  • [25] Kanaan H.Y., and Hayek A., and Al-Haddad K., Small-Signal Average Modeling, Simulation and Carrier-Based Linear Control of a Three-Phase Four-Leg Shunt Active Power Filter, in proc. of IEEE International Electric Machines Drives Conference (IEMDC), Turkey, 1 (2007), 601–607
  • [26] Frankilin G., Powell D., Workman M., Digital Control of Dynamic Systems (3rd Edition), Prentice Hall, 1997
  • [27] www.mathworks.com/help/robust/gs/tuning-control-systemswith-systune.html, Tuning Control Systems with SYSTUNE, MathWorks Documentation Center, (18.07.2014)
  • [28] www.mathworks.com/help/robust/gs/pid-tuning-for-setpointtracking-vs-disturbance-rejection.html, PID Tuning for Setpoint Tracking vs. Disturbance Rejection,MathWorks Documentation Center, (18.07.2014)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8e82e913-f4d1-457c-9132-65892c69c6d9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.