Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
We present an example of a separable metrizable topological group G having the property that no remainder of it is (topologically) homogeneous.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
67--71
Opis fizyczny
Bibliogr. 13 poz.
Twórcy
autor
- MGU and MPGU, Moscow, Russia
autor
- KdV Institute for Mathematics, University of Amsterdam, Science Park 904, P.O. Box 94248, 1090 GE Amsterdam, The Netherlands
Bibliografia
- [1] A. V. Arhangel’skii, Two types of remainders of topological groups, Comment. Math. Univ. Carolin. 47 (2008), 119–126.
- [2] A. V. Arhangel’skii, A study of remainders of topological groups, Fund. Math. 203 (2009), 1–14.
- [3] A. V. Arhangel’skii and J. van Mill, On uniquely homogeneous spaces, I, J. Math. Soc. Japan 64 (2012), 903–926.
- [4] A. V. Arhangel’skii and J. van Mill, Nonhomogeneity of remainders, Proc. Amer. Math. Soc., 2015, to appear.
- [5] D. W. Curtis and J. van Mill, Zero-dimensional countable dense unions of Z-sets in the Hilbert cube, Fund. Math. 118 (1983), 103–108.
- [6] E. K. van Douwen, Nonhomogeneity of products of preimages and π-weight, Proc. Amer. Math. Soc. 69 (1978), 183–192.
- [7] E. K. van Douwen, Why certain Čech–Stone remainders are not homogeneous, Colloq. Math. 41 (1979), 45–52.
- [8] R. Engelking, General Topology, 2nd ed., Heldermann, Berlin, 1989.
- [9] Z. Frolík, Non-homogeneity of βP - P, Comment. Math. Univ. Carolin. 8 (1967), 705–709.
- [10] K. Kunen, Weak P-points in N*, in: Topology, Vol. II (Budapest, 1978), North-Holland, Amsterdam, 1980, 741–749.
- [11] K. Kuratowski, Topology I, Academic Press, New York, 1966.
- [12] J. van Mill, A topological group having no homeomorphisms other than translations, Trans. Amer. Math. Soc. 280 (1983), 491–498.
- [13] W. Rudin, Homogeneity problems in the theory of Čech compactifications, Duke Math. J. 23 (1956), 409–419.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8e819b14-4da2-4615-ae7b-d8d1b3be7c9d