Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Pyrrolidines are important heterocyclic organic compounds which show biological effects. Many of them are successfully used in medicine. These compounds can also be applied in industry, for example as dyes or agrochemical substances. Therefore, the study of pyrrolidines chemistry is important for modern science. In this paper the pyrrolidines synthesis in [3+2] cycloaddition between Nmethyl azomethine ylide and trans-3,3,3-trichloro-1-nitroprop-1-ene was studied. The reaction was carried out experimentally and based on computational research. The obtained results show the reaction may be of a polar nature, and proceed under mild conditions leading to (3SR,4RS)-1-methyl-3-nitro-4-(trichloromethyl)pyrrolidine as a single reaction product. Probably, a similar protocol can be applied for analogous reactions involving other 2-substituted nitroethene analogues.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
26--35
Opis fizyczny
Bibliogr. 25 poz., rys.
Twórcy
autor
- Department of Organic Chemistry and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow (Poland)
autor
- Department of Organic Chemistry and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow (Poland)
autor
- Department of Organic Chemistry and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow (Poland)
autor
- Łukasiewicz Research Network, Institute of Heavy Organic Synthesis Blachownia Energetyków 9, 47-225 Kędzierzyn-Koźle (Poland)
autor
- Laboratory of Modern Chemical Synthesis and Technology of Pharmaceutically Active Compounds, Centre for Interdisciplinary Research, Faculty of Science and Health, The John Paul II Catholic University of Lublin, Konstantynów 1J/4.03, 20-708 Lublin (Poland)
autor
- Department of Organic Chemistry and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow (Poland)
- Sustainable Process Integration Laboratory, Faculty of Mechanical Engineering, Brno University of Technology, Technická 2896/2, 616 69 Brno (Czech Republic)
Bibliografia
- [1] Domingo, L.R.; Molecular Electron Density Theory: A Modern View of Reactivity in Organic Chemistry. Molecules. 2016, 21, 1319. DOI: 10.3390/molecules21101319
- [2] Pandey, G.; Banerjee, P.; Gadre, S.R.; Construction of Enantiopure Pyrrolidine Ring System via Asymmetric [3+2] Cycloaddition of Azomethine Ylides. Chem. Rev. 2006, 106, 4484-4517. DOI: 10.1021/cr050011g
- [3] Arrastia, I.; Arrieta, A.; Cossío, F.P.; Application of 1,3-Dipolar Reactions between Azomethine Ylides and Alkenes to the Synthesis of Catalysts and Biologically Active Compounds. Eur. J. Org. Chem. 2018, 5889-5904. DOI: 10.1002/ejoc.201800911
- [4] DeShong, P.; Kell, D.A.; Sidler, D.R.; Intermolecular and Intramolecular Azomethine Ylide [3+2] Dipolar Cycloadditions for the Synthesis of Highly Functionalized Pyrroles and Pyrrolidines. J. Org. Chem. 1985, 50, 2309-2315. DOI: 10.1021/jo00213a022
- [5] Hori, M.; Kataoka, T.; Shimizu, H.; Imai, E.; Matsumoto, Y.; Kawachi, M.; Kuratani, K.; Ogura, H.; Takayanagi, H.; Reactions of Xanthinium N(7)-ylides with Olefinic Dipolarophiles. J. Chem. Soc., Perkin Trans. 1 1987, 1211-1219. DOI: 10.1039 /P19870001211
- [6] Żmigrodzka, M.; Dresler, E.; Hordyjewicz-Baran, Z.; Kulesza, R.; Jasiński, R.; A Unique Example of Noncatalyzed [3+2] Cycloaddition Involving (2E)-3-aryl-2-nitroprop-2-enenitriles. Chem. Heterocycl. Comp. 2017, 53, 1161-1162. DOI: 10.1007/s10593-017-2186-6
- [7] Zawadzińska, K.; Ríos-Gutiérrez, M.; Kula, K.; Woliński, P.; Mirosław, B.; Krawczyk, T.; Jasiński, R.; The Participation of 3,3,3-Trichloro-1-nitroprop-1-ene in the [3+2] Cycloaddition Reaction with Selected Nitrile N-Oxides in the Light of the Experimental and MEDT Quantum Chemical Study. Molecules 2021, 26, 6774. DOI: 10.3390/ molecules26226774
- [8] Kula, K.; Dobosz, J.; Jasiński, R.; Kącka-Zych, A.; Łapczuk-Krygier, A.; Mirosław, B.; Demchuk, O.M.; [3+2] Cycloaddition of Diaryldiazomethanes with (E)-3,3,3-trichloro-1-nitroprop-1-ene: An Experimental, Theoretical and Structural Study. J. Mol. Struct. 2020, 1203, 127473. DOI: 10.1016/j.molstruc.2019.127473
- [9] Kula, K.; Kącka-Zych, A.; Łapczuk-Krygier, A.; Wzorek, Z.; Nowak, A.; Jasiński, R.; Experimental and Theoretical Mechanistic Study on the Thermal Decomposition of 3,3-Diphenyl-4-(Trichloromethyl)-5-nitropyrazoline. Molecules 2021, 26, 1364. DOI: 10.3390/molecules26051364
- [10] Fryźlewicz, A.; Łapczuk-Krygier, A.; Kula, K.; Demchuk, O.M.; Dresler, E.; Jasiński, R.; Regio- and Stereoselective Synthesis of Nitrofunctionalized 1,2-Oxazolidine Analogs of Nicotine. Chem. Heterocycl. Comp. 2020, 56, 120. DOI 10.1007/s10593-020-02631-6
- [11] Siadati, S.A.; Beyond the Alternatives that switch the Mechanism of the 1,3-Dipolar Cycloadditions from Concerted to Stepwise or Vice Versa: A Literature Review. Prog. React. Kinet. Mech. 2016, 41, 331-344. DOI:10.3184/146867816X14719552202168
- [12] Jasiński, R.; Dresler, E. On the Question of Zwitterionic Intermediates in the [3+2] Cycloaddition Reactions: A Critical Review. Organics 2020, 1, 49-69. DOI: 10.3390/org1010005
- [13] Zhao, Y.; Truhlar, D.G.; The M06 Suite of Density Functionals for Main Group Thermochemistry, Thermochemical Kinetics, Noncovalent Interactions, Excited States, and Transition Elements: Two New Functionals and Systematic Testing of Four M06-Class Functionals and 12 Other Functionals. Theor. Chem. Acc. 2008, 120, 215-241. DOI: 10.1007/s00214-007-0310-x
- [14] Shechter, H.; Conrad, F.; Daulton, A.L.; Kaplan, R.B.; Orientation in Reactions of Nitryl Chloride and Acrylic Systems. J. Am. Chem. Soc. 1952, 74, 3052-3056. DOI: 10.1021/ja01132a029
- [15] Jasiński, R.; Ziółkowska, M.; Demczuk, O.M.; Maziarka, A.; Regio- and Stereoselectivity of Polar [2+3] Cycloaddition Reactions between (Z)-C-(3,4,5-trimethoxyphenyl)-N-methylnitrone and Selected (E)-2-substituted Nitroethenes. Cent. Eur. J. Chem. 2014, 12, 586-593. DOI: 10.2478/s11532-014-0518-2
- [16] Jasiński, R.; β-Trifluoromethylated Nitroethenes in Diels-Alder Reaction with Cyclopentadiene: A DFT Computational Study. J. Fluor. Chem. 2018, 206, 1-7. DOI: 10.1016/j.jfluchem.2017.12.008
- [17] Domingo, L.R.; Kula, K.; Ríos-Gutiérrez, M.; Jasiński, R.; Understanding the Participation of Fluorinated Azomethine Ylides in Carbenoid-Type [3 + 2] Cycloaddition Reactions with Ynal Systems: A Molecular Electron Density Theory Study. J. Org. Chem. 2021, 86, 12644-12653. DOI: 10.1021/acs.joc.1c01126
- [18] Ríos-Gutiérrez, M.; Domingo, L.R.; Unravelling the Mysteries of the [3+2] Cycloaddition Reactions. Eur. J. Org. Chem. 2019, 267-282. DOI: 10.1002/ejoc.201800916
- [19] Perekalin, W.; Lipina, E.S.; Berestovitskaya, V.M.; Efremov, D.A.; The Nitro-Aldol (Henry) Reaction, in.: Nitroalkenes: Conjugated Nitrocompounds, 1st ed.; 1994, 30-70, Wiley: New York, NY, USA.
- [20] Brower, F.; Burkett, H.; 1,1,1-Trichloro-2-arylamino-3-nitropropanes. J. Am. Chem. Soc. 1953, 75, 1082-1084. DOI: 10.1021/ja01101a021
- [21] Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H.P.; Izmaylov, A.F.; Bloino, J.; Zheng, G.; Sonnenberg, J.L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J.A., Jr.; Peralta, J.E.; Ogliaro, F.; Bearpark, M.; Heyd, J.J.; Brothers, E.; Kudin, K.N.; Staroverov, V.N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J.C.; Iyengar, S.S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J.M.; Klene, M.; Knox, J.E.; Cross, J.B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R.E.; Yazyev, O.; Austin, A.J.; Cammi, R.; Pomelli, C.; Ochterski, J.W.; Martin, R.L.; Morokuma, K.; Zakrzewski, V.G.; Voth, G.A.; Salvador, P.; Dannenberg, J.J.; Dapprich, S.; Daniels, A.D.; Farkas, Ö.; Foresman, J.B.; Ortiz, J.V.; Cioslowski, J.; Fox, D.J.; Gaussian 09 Rev D.01 Gaussian Inc Wallingford CT 2009.
- [22] Zawadzińska, K.; Kula, K.; Application of β-phosphorylated Nitroethenes in [3+2] Cycloaddition Reactions Involving Benzonitrile N-oxide in the Light of DFT Computational Study. Organics 2021, 2, 26-37. DOI: 10.3390/org2010003
- [23] Kula, K.; Zawadzińska, K.; Local Nucleophile-Electrophile Interactions in [3+2] Cycloaddition Reactions Between Benzonitrile N-oxide and Selected Conjugated Nitroalkenes in the light of MEDT Computational Study. Curr. Chem. Lett. 2021, 10, 9-16. DOI: 10.5267/j.ccl.2020.4.003
- [24] Kula, K.; Łapczuk-Krygier, A.; A DFT Computational Study on the [3+2] Cycloaddition between Parent Thionitrone and Nitroethene. Curr. Chem. Lett. 2018, 7, 27-34.DOI: 10.5267/j.ccl.2018.02.001
- [25] Scalmani, G.; Frisch, M.J.; Continuous Surface Charge Polarizable Continuum Models of Solvation. I. General formalism. J. Chem. Phys. 2010, 132, 114110. DOI: 10.1063/1.3359469
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8e805f5c-c323-42a9-b370-ac00e607c798