PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Insights into the interaction between octyl hydroxamic acid and the rutile surface activated by lead ion

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The flotation of rutile can be enhanced using lead ion as an activator. However, the binding behavior of collector on the activated rutile surface is still not fully understood. In this work, flotation and theoretical calculation approaches were employed to evaluate the activation behavior of lead ion in the flotation of rutile with octyl hydroxamic acid (OHA). Flotation results indicated that the activation flotation with lead ion should be conducted at pH 6.5. The binding features of OHA molecule on the inactivated and Pb-activated rutile surfaces were both investigated by density functional theory (DFT) studies. The OHA molecule may dissociate into OHA− anion on the inactivated rutile surface, generating a new Ti–O bond. Differently, the chelate complex of Pb-OHA anion was generated on the activated rutile surface, producing two Pb–O bonds. The adsorption of OHA onto the activated rutile surface was more stable than that on the inactivated rutile surface, due to the formation of more chemical bonds on the activated rutile surface. The DFT calculation results delineated the role of Pb2+ in the rutile flotation with OHA.
Słowa kluczowe
Rocznik
Strony
928--938
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
autor
  • Faculty of Land Resources Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, PR China
  • State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization,Kunming University of Science and Technology,Kunming 650093
autor
  • State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization,Kunming University of Science and Technology,Kunming 650093
autor
  • Faculty of Land Resources Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, PR China
autor
  • Faculty of Land Resources Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, PR China
Bibliografia
  • BRENNA, B.J., CHEN, J., RUDSHTEYN, B., CHAUDHURI, S., MERCADO, B.Q., BASTISTA, V.S., CRABTREE, R.H., BRUDVIG, G.W., 2016. Molecular titanium-hydroxamate complexes as models for TiO2 surface binding. Chem. Commun. 52, 2972-2975.
  • CHEN, L., WEN, S., XU, G., XIE, H., 2013. A Novel Process for Titanium Sand by Magnetic Separation and Gravity Concentration. Miner. Process. Extr. Metall. Rev. 34, 139-150.
  • FRANCIS, G.P., PAYNE, M.C., 1990. Finite basis set corrections to total energy pseudopotential calculations. J. Phys.: Condens. Matter. 2, 4395-4404.
  • LI, H., MU, S., WENG, X., ZHAO, Y., SONG, S., 2016. Rutile flotation with Pb2+ ions as activator: Adsorption of Pb2+ at rutile/water interface. Colloids Surf., A. 506, 431-437.
  • LIN, Y., CHEN, C., WANG, W., JIANG, Y., CAO, X., 2020. Beneficial effects and mechanism of lead ions for bastnaesite flotation with octyl hydroxamic acid collector. Miner. Eng. 148, 106119.
  • LIU, Q., PENG, Y., 1999. The development of a composite collector for the flotation of rutile. Miner. Eng. 12, 1419-1430.
  • LU, X., ZHANG, H.P., LENG, Y., FANG, L., QU, S., FENG, B., WENG, J., HUANG, N., 2010. The effects of hydroxyl groups on Ca adsorption on rutile surfaces: a first-principles study. J Mater Sci Mater Med. 21, 1-10.
  • MENG, Q., FENG, Q., SHI, Q., OU, L., 2015. Studies on interaction mechanism of fine wolframite with octyl hydroxamic acid. Miner. Eng. 79, 133-138.
  • MURUGAN, P., KUMAR, V., KAWAZOE, Y., 2006. Thickness dependence of the atomic and electronic structures of TiO2 rutile (110) slabs and the effects on the electronic and magnetic properties of supported clusters of Pd and Rh. Phys. Rev. B. 73, 075401.
  • PERDEW, J.P., BURKE, K., ERNZERHOF, M., 1996. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865.
  • PERDEW, J.P., ZUNGER, A., 1981. Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B. 23, 5048.
  • PERRON, H., DOMAIN, C., ROQUES, J., DROT, R., SIMONI, E., CATALETTE, H., 2007a. Optimisation of accurate rutile TiO2 (110), (100), (101) and (001) surface models from periodic DFT calculations. Theor. Chem. Acc. 117, 565-574.
  • PERRON, H., VANDENBORRE, J., DOMAIN, C., DROT, R., ROQUES, J., SIMONI, E., EHRHARDT, J.J.,
  • CATALETTE, H., 2007b. Combined investigation of water sorption on TiO2 rutile (1 1 0) single crystal face: XPS vs. periodic DFT. Surf. Sci. 601, 518-527.
  • PREDOTA, M., BANDURA, A.V., CUMMINGS, P.T., KUBICKI, J.D., WWSOLOWSKI, D.J., CHIALVO, A.A., MACHESKY, M.L., 2004. Electric Double Layer at the Rutile (110) Surface. 1. Structure of Surfaces and Interfacial Water from Molecular Dynamics by Use of ab Initio Potentials. J. Phys. Chem. B. 108, 12049-12060.
  • PREMARATNE, W.A.P.J., ROWSON, N.A., 2003. The Processing of Beach Sand from Sri Lanka for the Recovery of Titanium Using Magnetic Separation. Phys. Sep. Sci. Eng. 12, 13-22.
  • SEBBARI, K., DOMAIN, C., ROQUES, J., PERRON, H., SIMONI, E., CATALETTE, H., 2011. Investigation of hydrogen bonds and temperature effects on the water monolayer adsorption on rutile TiO2 (110) by first-principles molecular dynamics simulations. Surf. Sci. 605, 1275-1280.
  • SEGALL, M., LINDAN, P.J., PORBERT, M.A., PICKARD, C., HASNIP, P., CLARK, S., PAYNE, M., 2002. Firstprinciples simulation: ideas, illustrations and the CASTEP code. J. Phys.: Condens. Matter. 14, 2717.
  • USGS, 2019. Mineral commodity summaries 2019: U.S. Geological Survey. U.S. Government Publishing Office. WANG, J., CHENG, H.W., ZHAO, H.B., QIN, W.Q., QIU, G.Z., 2014. Flotation behavior and mechanism of rutile in presence of sodium oleate. Chin. J. of Nonferrous Met. 24, 820-825.
  • WANG, J., CHENG, H.W., ZHAO, H.B., QIN, W.Q., QIIU, G.Z., 2016. Flotation behavior and mechanism of rutile with nonyl hydroxamic acid. Rare Met. 35, 1-6.
  • XIAO, W., CAO, P., LIANG, Q., HUANG, X., LI, K., ZHANG, Y., QIN, W., QIU, G., WANG, J., 2018a. Adsorption behavior and mechanism of Bi(III) ions on rutile–water interface in the presence of nonyl hydroxamic acid. T Nonferr. Metal Soc. 28, 348-355.
  • XIAO, W., CAO, P., LIANG, Q., PENG, H., ZHAO, H., QIN, W., QIU, G., WANG, J., 2017. The Activation Mechanism of Bi3+ Ions to Rutile Flotation in a Strong Acidic Environment. Minerals 7, 113.
  • XIAO, W., FANG, C., WANG, J., LIANG, Q., CAO, P., WANG, X., ZHANG, L., QIU, G., HU, J., 2018b. The role of EDTA on rutile flotation using Al3+ ions as an activator. Rsc. Advances 8, 4872-4880.
  • XIAO, W., JIAO, F., ZHAO, H., QIN, W., QIU, G., WANG, J., 2018c. Adsorption Structure and Mechanism of Styryl Phosphoric Acid at the Rutile–Water Interface. Minerals 8, 360.
  • YANG, X., LIU, S., LIU, G., ZHONG, H., 2017. A DFT study on the structure–reactivity relationship of aliphatic oxime derivatives as copper chelating agents and malachite flotation collectors. J. Ind. Eng. Chem. 46, 404-415.
  • YU, X., CAO, Q., ZOU, H., PENG, Q., 2019. Activation Mechanism of Lead Ions in the Flotation of Rutile Using Amyl Xanthate as a Collector. Min., Metall., Explor. 1-12.
  • ZHANG, W., ZHU, Z., CHENG, C.Y., 2011. A literature review of titanium metallurgical processes. Hydrometallurgy 108, 177-188.
  • ZHENG, T., WU, C., CHENG, M., ZHANG, Y., CUMMINGS, P.T., 2016. Molecular mechanics of the cooperative adsorption of a Pro-Hyp-Gly tripeptide on a hydroxylated rutile TiO2 (110) surface mediated by calcium ions. Phys. Chem. Chem.Phys. 18, 19757-19764.
  • ZOU, H., CAO, Q., CHEN, X., LIU, D., 2019. Adsorption of lead ion on the hydrated rutile (110) surface: a DFT calculation study. Physicochem. Probl. Miner Process.. 55, 951-959.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8e7f1f6a-18df-47c8-8a85-54392e3910fb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.