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Abstract: In this paper the analytical solution of the boundary–value heat conduction problem for a brake rotor was 
developed. A solid brake disc is heated by frictional heat flux during braking with constant deceleration. Intensity of the 
heat flux affecting friction surface of the disc is proportional to the specific power of friction. It was assumed that 
contact pressure between the pad and the disc increases linearly, from zero in the initial moment of the braking process 
to the maximum value in standstill. Calculations were carried out on variables and parameters in the dimensionless 
form. The obtained results were compared with adequate resultsduring braking with constant deceleration, with an 
assumption of pressure constant in time.  
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Introduction 
 
Nomenclature:  
a – effective depth of the heat penetra-tion [m];  
erf(x) – Gauss error function;  
erfc(x)=1 – erf(x) – complementary error function; 

)(erfc)exp()(ierfc 221 xxxx    – integral of the 

complementary error function;   
f – friction coefficient;  
K – thermal conductivity [W K-1 m-1];  
k – thermal diffusivity [m2 s-1];  
p – contact pressure [Pa];   
q  – intensity of the frictional heat flux[W m-2];  
t – time [s];  
ts – braking time[s];  
T – temperature [K];  
T* – dimensionless temperature;  
T0 – temperature scaling factor [K];  
Ta – ambient temperature [K];  
V – velocity sliding [m s-1 ];  
τ – Fourier number;  
ζ – dimensionless spatial coordinate. 
 
In the mechanical brakes large amount of heat is 
generated due to friction. High temperature on the 
contact surface causes changes of thermophysical 
properties and deterioration of frictional couple, which 
results in reduction of the braking efficiency [8]. The 
temperature is a main parameter for the assessment of 
abrasive wear and thermal stability of friction systems. 
Therefore, knowledge of the temperature field is a 
priority in the brake system design process. One of the 
effective methods used to predict the maximal 

temperature on the pad/disc interface is formulation and 
solving of friction heat problems. These are boundary–
value heat conduction problems with defined heat flux 
on the friction surface. The intensity of frictional heat 
flux is proportional to the specific power of friction 
forces. It is equal to product of friction coefficient, 
contact pressure and sliding speed [3]. In this study a 
mathematical model of transient temperature field in a 
brake disc was developed using this method. It was 
assumed that, the braking process proceeds with linear 
distribution of pressure and constant deceleration. 
 
Statement to the problem  
 
Frictional heating of the contact surface of a brake disc is 
considered. The assumptions were applied:  
- the material of the disc is homogeneous and isotropic; 
- spatial distribution of the contact pressure on pad/disc 
interface increases linearly: 
 

ss tttttptpptp   0,)(),()( 0 ;       (1) 

- braking proceeds with constant deceleration i.e. 
velocity of the vehicle decreases linearly from the 
maximal value V0 in the initial time t = 0 , to zero in the 
retention time t = ts: 

  ss tttttVtVVtV   0,/1)(),()( *
0 ;    (2) 

- the sum of heat fluxes intensities directed 
perpendicularly from the friction surface to the inside of 
the brake disc, is equal to the specific power of friction 
forces:  

 ,0),()( *
0 stttqqtq             (3) 

where: 
,000 Vfpq                   (4) 
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 stttVtptq  0),()()( *** ;         (5) 

- gradient of temperature in radial and circumferential 
directions are negligible; 
- the free surface of the brake rotor is adiabatic;  
- in the initial time of the braking process the 
temperature of the disc is constant, equal to Ta. 
According to the above assumptions the transient 
temperature field of the disc is one–dimensional. To find 
the distribution of the temperature, we had the following 
parabolic heat conduction problem boundary–value for 

semi–space in the Cartesian coordinate system Oxyz 
(Fig. 1). 
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where intensity of the heat flux q(t) has form (3–5).  

 
 

 
 
 

Fig. 1. Scheme of the problem. 
 
 
Applying the following dimensionless variables and 
parameters: 
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( skta 3  – effective depth of the heat penetration 

inside the brake disc [4, 5]), considered boundary–value 
problem (6–9) was written in dimensionless form: 
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where 
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Solution and verification to the problem 
 
Solution to the formulated boundary-value problem of 
heat conduction (11–15) was found based on Duhamel's 
theorem [6], which for the considered case can be 
written in the form: 

dssTsqT ),()(),( )0(
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where [2] 
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is solution to the problem (11)–(15) with constant 
intensity of heat flux q*(τ) = 1 in boundary condition 
(12).  
Substituting function q*(τ) (15) and solution (17) in 
equation (16), we have: 
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Taking into account the value of the following derivative 
[1]: 
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derivative of integral of the complementary error 
function was counted:   
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Using relation (20), we achieved:  
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Substituting the partial derivative (21) to the formula 
(18), we have: 

 ),(
1

),(
1

),( 221
* 





 IIT

ss

 ,        (22) 

where  

dse
s

s
I s





















0

2

2
1

1
),( ,    

 dse
s

s
I s





















0

2

2
2

2
1

),( .      (23) 

Subsequently, function I1(ζ,τ) was presented in the 
following form: 
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Using the method of substitution the formula (25) was 
received: 
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Counting the integral (27) [7]: 
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from equation (26) it was found:  
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Function J2(ζ,τ) (25) was found in the similar way: 
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Exploiting the following recurrence relation [7]: 
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and relation (28), we achieved: 
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Taking into account function L4(ζ,τ) (32) in formula (30),  
we obtained: 
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Substituting function J1(ζ,τ) (29) and J2(ζ,τ)  (33) into the 
right side of equation (24), we received: 
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Function I2(ζ,τ) (23) was written as a difference of the 
integrals: 
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Based on relation (29), we can write: 
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To find integral in equation (36), the method of 
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Function J4(ζ,τ) (38) was written in the form: 
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Based on equations (31) and (32) it was found: 
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Taking into account relations (32) and (40) in formula (38), 
it was counted: 
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Substituting functions J3(ζ,τ)  (37) and J4(ζ,τ)  (41) to the right 
side of equation (35), we received: 
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In regard to functions I1(ζ,τ) (34) , I2(ζ,τ) (42) and relation 
(22), we found the dimensionless temperature field:  
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To verify the correctness of the obtained solutions (43) 
the accordance of the boundary (12), (13) and initial (14) 
conditions with achieved temperature fields were 
examined. First, the accordance of boundary condition 
(12) was checked, which defines thermal load on the 
outer surface of the strip ζ = 0. For this purpose, the 
derivative of complementary error function (19) and the 
derivative of its integral (20) were taken into account, we 
achieved:  
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Differentiating solution (43) with respect ζ, with regard 
to the derivatives (44), was found:  
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Substituting in equation (45) ζ = 0, we received: 

 ,1
),(

2

2

0

*














 ssss

T


















     (46) 

which provides the fulfillment of the boundary condition 
(12), in regard to the form of function q*(τ) (15). 
Taking into account, that [1]: 

0)erfc(lim 


x
x

,                 (47) 

we obtained:  

.0)(erfclim)ierfc(lim

2




















xx

e
x

x

xx 
       (48) 

The limit of the solution (43) as ζ approaches infinity 
(ζ→ ∞) in regard to value of the limits (47)–(48), was 
calculated: 
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which shows the fulfillment of the condition (13).  
Substituting τ = 0 in the solution (43) we can easy 
compute: 
 0)0,(* T ,                   (50) 

in this way, conformity of the result (43) with the initial 
condition (14) has been proved. 
 
Numerical analysis 
 
Numerical analysis was carried out based on the devised 
solution (43), which describes transient temperature field 
in a brake disc heated by frictional heat flux with linearly 
increasing contact pressure. The results were compared 
with the following, adequate results, which were 
received in the article [9], with an assumption of 
constant pressure:  
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During braking with linear distribution of contact 
pressure (1) and linearly decreasing sliding velocity (2), 
dimensionless total amount of thermal energy directed to 
a brake disc is:  
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Whereas, during braking with constant pressure 
p*(τ)  = p* > 0 and constant deceleration this value is 
equal: 
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                         (53) 
Taking into account (52) and (53), to maintain the same 
total amount of heat, during calculations of temperature 

field in the case with constant pressure, the value  p*=1/3 
was adopted.  
The input dimensionless conditions used to numerical 
analysis were: distance from friction surface ζ and 
Fourier numbers (dimensionless time) τ  and  τs. It was 
assumed that, dimensionless braking time is τs=1.  
Evolution of the dimensionless temperature T* in time, 
on few depth ζ was presented in Fig. 2. At the beginning 
of the process the temperature increases, attains the 
maximum value and decreases until the moment of 
standstill. The maximum dimensionless temperatures 
T*=0,425 (Fig. 2a) and T*=0,177 (Fig. 2b) are reached 
on the contact surface ζ = 0, exactly in the half of 
braking time (τ = 0,5). The maximum temperature 
achieved in the braking with linearly changing pressure 
is 140% higher than in the braking with constant 
pressure.  

 

a)         b)  
Fig. 2. The evolution of the dimensionless temperature T* versus time τ with respect to braking time τs, on several distances of 

friction surface ζ: a) linearly increasing contact pressure; b) constant pressure. 
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Cooling of the outer surface of the disc after maximum 
temperature has been reached, in the case with linear 
distribution of pressure is more intense than with 
constant pressure. The temperature is lower and the time 
to reach maximum temperature value increases with 
increasing distance from the friction surface to the center 
of the disc. In the braking with constant pressure 
maximum temperatures on particular distances ζ are 
achieved with higher time offset in the standstill 
direction. Monotonically temperature increases during 
the entire braking process: with linear distribution of the 
pressure it takes place under the distance ζ = 1,5, while 
with constant pressure –  under the distance ζ = 1.  
Distribution of the dimensionless temperature T* versus 
dimensionless depth ζ in several values of Fourier 

number τ were shown in Fig. 3. The temperature 
monotonically decreases with increasing of the distance 
from the heated surface. The largest gradient between 
temperature on the friction surface ζ = 0 and at the 
distance ζ = 1,5, occurs in the half time of braking 
process τ = 0,5 (Fig. 3). The mentioned gradient reaches 
minimum value in the stop moment τ = τs = 1. Effective 
depth of the heat penetration, i.e. distance from friction 
surface, on which the temperature achieved 5% of the 
maximum value on heated surface. During braking with 
linearly increasing pressure, effective depth of the heat 
penetration is equal ζeff  = 1 (Fig. 3a) and the temperature 
decreases more rapidly (Fig. 3a). Whereas, during 
braking with constant pressure the mentioned depth has a 
higher value ζeff  > 1,5 (Fig. 3b).  

 
 

a)        b)  
 

Fig. 3. Distribution of the dimensionless temperature T* inside disc at few different dimensionless time moments τ: a) linearly 
increasing contact pressure; b) constant pressure. 

 
 
Conclusions  
 
Conducted analysis demonstrates, that: 
-with equal value of total amount of heat, during braking 
with constant pressure reached temperatures near the 
working surface are significantly lower. Adjacent the 
distance ζ = 1, obtained temperatures in both cases are 
equal. Below this depth, the temperatures achieved in 
case of constant pressure are higher;  
- cooling of the heated surface during braking with linear 
distribution of the pressure is more intensive; 

- effective depth of the heat penetration is higher during 
braking with constant pressure; 
- the time to reach maximum temperature value increases 
with increasing distance from the friction surface to the 
center of the disc. In the braking with constant pressure 
the maximum temperatures on particular distances ζ are 
achieved with higher time offset in the standstill 
direction; 
- the temperature increases monotonically during the en-
tire braking process with linear distribution of the 
pressure which takes place on the distance 5,1 , while 

with constant pressure – on the distance 1 .  
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