PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigating the Effects of Crack Orientation and Defects on Pipeline Fatigue Life Through Finite Element Analysis

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In response to the steady rise in global demand for energy resources such as gas and oil, there is a pressing need to enhance the efficiency and safety of pipeline transportation systems. These systems, integral for transferring vast amounts of energy, must operate under increasingly higher pressures and larger diameters without compromising reliability. This study focuses on utilizing finite element analysis (FEA) to investigate the influence of crack orientation and the presence of defects on the fatigue life of pipelines. By simulating internal pressure scenarios and examining various defect characteristics with the AFGROW software, this research applies damage tolerance principles to offer insights into the fatigue behavior of pipelines. The findings can be applied to extend the operational life and ensure the integrity of these critical infrastructures, thereby supporting the sustainable and safe transport of energy resources.
Słowa kluczowe
Rocznik
Tom
Strony
1--21
Opis fizyczny
Bibliogr. 37 poz., rys., tab., wykr., wzory
Twórcy
autor
  • Artificial Intelligence Laboratory for Mechanical and Civil Structures and Soil, Department of Mechanical Engineering, Institute of Technology, University Center of Naama, Naama 45000, Algeria
  • Laboratory of Materials and Reactive Systems, University of Sidi Bel Abbes, Algeria
  • Smart Structures Laboratory, Department of Mechanical Engineering, Belbachir Belhadj University of Ain Temouchent, 46000 Algeria
  • Artificial Intelligence Laboratory for Mechanical and Civil Structures and Soil, Department of Mechanical Engineering, Institute of Technology, University Center of Naama, Naama 45000, Algeria
  • Laboratoire d'Etude des Structures et de Mécanique des Matériaux, Département de Génie Civil, Faculté des Sciences et de la Technologie, Université Mustapha Stambouli B.P. 305, R.P. 29000 Mascara, Algeria
  • Laboratory of Materials and Reactive Systems, University of Sidi Bel Abbes, Algeria
  • Mechanical Systems & Materials Engineering Laboratory, Mechanical Engineering Department, Faculty of Technology, University of Tlemcen, BP 230-13000, Tlemcen, Algeria
Bibliografia
  • Alberta Energy Regulator. (2020). Pipeline Performance (New Reports). https://www.aer.ca/protecting-what-matters/holding-industry-accountable/industry-performance/pipeline-performance
  • Augustin, P. (2009). Simulation of fatigue crack growth in integrally stiffened panels under the constant amplitude and spectrum loadin. Fatigue of Aircraft Structures, 2009(1), 5-19. https://doi.org/10.2478/v10164-010-0001-2
  • Ballantyne, D. (2008). M7.8 Southern San Andreas Fault Earthquake Scenario: Oil and Gas Pipelines (California Geological Survey Preliminary Report 25 version 1.0). MMI Engineering.
  • Benachour, M., Benachour, N., & Benguediab, M. (2017). Fractograpic observations and effect of stress ratio on fatigue striations spacing in aluminium alloy 2024 T351. Materials Science Forum, 887, 3-8. https://doi.org/10.4028/www.scientific.net/msf.887.3
  • Benhamena, A., Aminallah, L., Bouiadjra, B. B., Benguediab, M., Amrouche, A., & Benseddiq, N. (2011). J integral solution for semi-elliptical surface crack in high density poly-ethylene pipe under bending. Materials & Design, 32(5), 2561-2569. https://doi.org/10.1016/j.matdes.2011.01.045
  • Bibly, B. A., Cotrell, A. H., & Swinden, K. H. (1963). The spread of plastic yield from a notch. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 272(1350), 304-314. https://doi.org/10.1098/rspa.1963.0055
  • Broek, D. (1989). The practical use of fracture mechanics. Kluwer Academic Publishers. https://doi.org/10.1002/mawe.19890200504
  • Chen, Y., Zhang, H., Zhang, J., Liu, X., Li, X., & Zhou, J. (2015). Failure assessment of X80 pipeline with interacting corrosion defects. Engineering Failure Analysis, 47, 67-76. https://doi.org/10.1016/j.engfailanal.2014.09.013
  • Cristoffanini, C., Karkare, M., & Aceituno, M. (2014). Transient simulation of long-distance tailings and concentrate pipelines for operator training. Presented at SME Annual Meeting/Exhibit, February 24-26, 2014, Salt Lake City, UT, USA, 1-7. https://www.andritz.com/resource/blob/15062/50bf8f04c35997dbce9c51b8b3d2fab3/aa-dynamic-simulation-long-tailings-concentrate-pipelines-data.pdf
  • Czaban, M. (2018). Aircraft corrosion - review of corrosion processes and its effects in selected cases. Fatigue of Aircraft Structures, 2018(10), 5-20. https://doi.org/10.2478/fas-2018-0001
  • Elber, W. (1970). Fatigue crack closure under cyclic tension. Engineering Fracture Mechanics, 2, 445-476.
  • European Gas Pipeline Incident Data Group. (2020). Gas Pipeline Incidents: 11th Report of the European Gas Pipeline Incident Data Group (period 1970 - 2019) (Doc. number VA 20.0432). https://www.egig.eu/reports
  • Fatigue crack growth computer program ‘NASGRO’ version 3.0 - reference manual (Technical Report JSC-22267B). (2001). NASA. http://www.nasgro.swri.org
  • Forman, R. G., Kearney, V. E., & Engle, R. M. (1967). Numerical analysis of crack propagation in cyclic-loaded structures. Journal of Basic Engineering, 89(3), 459-463. https://doi.org/10.1115/1.3609637
  • Fuiorea, I., Bartis, D., Nedelcu, R., & Frunzulica, F. (2009). Numerical models for fatigue crack evolution study. Fatigue of Aircraft Structures, 2009(1), 42-49. https://doi.org/10.2478/v10164-010-0004-z
  • Harter, J. A. (2002). AFGROW users guide and technical manual. (Technical Report AFRL-VA-WP-TR-2002-XXX). U.S. Air Force Research Laboratory. http://afgrow.wpafb.af.mil
  • Hredil, M., Krechkovska, H., Tsyrulnyk, O., & Student, O. (2020). Fatigue crack growth in operated gas pipeline steels. Procedia Structural Integrity, 26, 409-416. https://doi.org/10.1016/j.prostr.2020.06.052
  • Irfan, O. M., & Omar, H. M. (2017). Experimental study and prediction of erosion-corrosion of AA6066 aluminum using artificial neural network. Engineering, Materials Science, 17(06), 17-31. https://www.ijens.org/IJMMEVol17Issue06.html
  • Jasztal, M., Kocanda, D., & Tomaszek, H. (2010). Predicting fatigue crack growth and fatigue life under variable amplitude loading. Fatigue of Aircraft Structures, 2010(2), 37-51. https://doi.org/10.2478/v10164-010-0024-8
  • Kaddouri, K., BachirBouaidjra, B., Belhouari, M., & Madani, K. (2004). Elastic plastic analysis of cracks in pipe. In 15th European Conference on Fracture: ECF 15 - advanced fracture mechanics for life and safety assessments: Aug.11-13, 2004, KTH Stockholm, Sweden.
  • Kamińska, P., Synaszko, P., Ciężak, P., & Dragan, K. (2020). Analysis of the corrosion resistance of aircraft structure joints with double-sided rivets and single-sided rivets. Fatigue of Aircraft Structures, 2020(12), 57-68. https://doi.org/10.2478/fas-2020-0006
  • Kebir, T., Benguediab, M., & Imad, A. (2017). A model for fatigue crack growth in the paris regime under the variability of cyclic hardening and elastic properties. Fatigue of Aircraft Structures, 2017(9), 117-135. https://doi.org/10.1515/fas-2017-0010
  • Kebir, T., Correia, J. A. F. O., Benguediab, M., & Imad, A. (2021). A FCG model and the graphical user interface under Matlab for predicting fatigue life: Parametric studies. Fatigue of Aircraft Structures, 2021(13), 116-139. https://doi.org/10.2478/fas-2021-0011
  • Kocańda, D., & Torzewski, J. (2009). Deterministic approach to predicting the fatigue crack growth in the 2024-T3 aluminum alloy under variable amplitude loading. Fatigue of Aircraft Structures, 2009(1), 102-115. https://doi.org/10.2478/v10164-010-0010-1
  • Kudari, S. K., & Sharanaprabhu, C. M. (2017). The effect of anodizing process parameters on the fatigue life of 2024-t-351-aluminium alloy. Fatigue of Aircraft Structures, 2017(9), 109-115. https://doi.org/10.1515/fas-2017-0009
  • Low, E. T. (2021). FEM fatigue simulation for an offshore pipeline containing interacting cracks (Final Year Project (FYP)). Nanyang Technological University. https://hdl.handle.net/10356/148866
  • Mechab, B., Malika, M., Salem, M., & Boualem, S. (2020). Probabilistic elastic-plastic fracture mechanics analysis of propagation of cracks in pipes under internal pressure. Frattura ed Integrità Strutturale, 14(54), 202-210. https://doi.org/10.3221/igf-esis.54.15
  • Mohitpour, M., Murray, A., McManus, M., & Colquhoun, I. (2010). Pipeline Integrity Assurance. ASME Press. https://doi.org/10.1115/1.859568
  • Moussouni, A., Benachour, M., & Benachour, N. (2023). Prediction of fatigue cracks using gamma function. Fatigue of Aircraft Structures. https://doi.org/10.2478/fas-2022-0004
  • Paris, P. C., & Erdogan, F. (1963). A critical analysis of crack propagation laws. Journal of Basic Engineering, 85, 528-533.
  • Soares, E., Bruère, V. M., Afonso, S. M. B., Willmersdorf, R. B., Lyra, P. R. M., & Bouchonneau, N. (2019). Structural integrity analysis of pipelines with interacting corrosion defects by multiphysics modeling. Engineering Failure Analysis, 97, 91-102. https://doi.org/10.1016/j.engfailanal.2019.01.009
  • Sun, J., & Cheng, Y. F. (2019). Modelling of mechano-electrochemical interaction of multiple longitudinally aligned corrosion defects on oil/gas pipelines. Engineering Structures, 190, 9-19. https://doi.org/10.1016/j.engstruct.2019.04.010
  • Weertman, J. (1973). Theory of fatigue crack growth based on a BCS Crack theory with work hardening. International Journal of Fracture, 9, 125-131. https://doi.org/10.1007/BF00041854
  • Witek, L. (2011). Experimental and numerical crack initiation analysis of the compressor blades working in resonance conditions. Fatigue of Aircraft Structures, 2011(3), 134-153. https://doi.org/10.2478/v10164-010-0045-3
  • Zarea, M., Piazza, M., Vignal, G., Jones, C., Rau, J., & Wang, R. (2013). Review of R&D in support of mechanical damage threat management in onshore transmission pipeline operations. Proceedings of the 2012 9th International Pipeline Conference. Volume 2: Pipeline Integrity Management. Calgary, Alberta, Canada. September 24-28, 2012. ASME, 569-582.
  • Zhang, C., Sun, X., Li, Y., Zhang, X., Zhang, X., Yang, X., & Li, F. (2018). Hydraulic characteristics of transporting a piped carriage in a horizontal pipe based on the bidirectional fluid-structure interaction. Mathematical Problems in Engineering, 2018, 1-27. https://doi.org/10.1155/2018/8317843
  • Zhang, Y., Xiao, Z., & Luo, J. (2018). Fatigue crack growth investigation on offshore pipelines with three-dimensional interacting cracks. Geoscience Frontiers, 9(6), 1689-1697. https://doi.org/10.1016/j.gsf.2017.09.011
Uwagi
This work was carried out in the Laboratory of Materials and Reactive Systems of Djillali Liabes University of Sidi Bel Abbes, which is sponsored by the Directorate-General for Scientific Research and Technological Development (DGRST Algeria).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8e77c9ed-cdc8-49e2-b882-2f8355c18ed6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.