PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The influence of electron and gamma irradiation on the properties of starch : PVA films : the effect of irradiation dose

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper discusses the effect of ionizing radiation on the functional properties of the biodegradable starch:PVA films. The analysis is related to the possible use of the material for packing the products (particularly, food) that are predicted for radiation decontamination and to the potential modifi cation of the material by radiation treatment. Our previous results have shown that the infl uence of ionizing radiation on the films’ properties varied for the specific compositions (differing in starch:PVA ratio or the type of substrates) and depended on irradiation conditions. However, these studies considered only the irradiation performed in gamma chamber or in e-beam using a dose of 25 kGy. Therefore, the present study deals with the effect of the irradiations performed using various doses on the selected promising starch:PVA composition. The films characterized by starch:PVA weight ratio of 45:55 was obtained by solution casting and irradiated with fast electrons in air and with 60Co gamma rays in nitrogen applying the doses of 5, 10, 20, 25, 30, 50, and 75 kGy. No regular dependence has been noticed between the composition of films (differing in the starch and PVA content) and the intensities of the particular bands in the UV-VIS DRS spectra after irradiation. The results indicated strong interaction of the starch and PVA components in the films and the occurrence of specific reactions in each composition upon irradiation. No special differences were observed between tensile strength and Young’s modulus of the non-irradiated films characterized by the starch:PVA ratio equal to 45:55 and the samples irradiated using doses in the range of 5–75 kGy. Similarly, no differences were observed in both cases between the swelling capability of the non-irradiated and the irradiated films. However, it can be deduced that solubility in water increased when the radiation dose increased. The results show that using the doses till the range 25 kGy does not cause an essential change of all the examined properties of the starch:PVA (45:55) films. Accordingly, starch:PVA (45:55) films might be considered suitable for packing food predicted for radiation decontamination.
Czasopismo
Rocznik
Strony
3--9
Opis fizyczny
Bibliogr. 42 poz., rys.
Twórcy
  • Institute of Nuclear Chemistry and Technology Dorodna 16 Str., 03-195 Warsaw, Poland
  • Advanced Pharmaceutical Concepts (APS) Institute Aleje Jerozolimskie 146c Str., 02-305 Warsaw, Poland
Bibliografia
  • 1. Voigt, H. -D., Gehring, M., Rom, C., Weiwad, D., Rapthel, I., Reichwald, K., & Kakuschke, R. (1995) Patent WO96/17888 (PCT/DE1995/001732). Biodegradable thermoplastic materials and packaging containers made from them (by GMBH, R.J. Reynolds Tobacco GMBH).
  • 2. Jimenez, A., Fabra, M. J., Talens P., & Chiralt, A. (2012). Edible and biodegradable starch films: A review. Food Bioprocess Technol., 5, 2058–2076.
  • 3. Ishigaki, T., Kawagoshi, Y., Ike, M., & Fujita, M. (1999). Biodegradation of a polyvinyl-alcohol-starch blend plastic fi lm. World J. Micr. Biot., 15, 321–327.
  • 4. Tang, Sh., Peng, Z., Xiong, H., & Tang, H. (2008). Effect of SiO2 on the performance of starch/polyvinyl alcohol blend films. Carbohydr. Polym., 72, 521–526.
  • 5. Zhou, J., Ma, Y., Ren, L., Tong, Z., Liu, J., & Xie, L. (2009). Preparation and characterization of Surface crosslinked TPS/PVA blend films. Carbohydr. Polym., 76, 632–638.
  • 6. Rahmat, A. R., Rahman, W. A., Sin, L. T., & Yussuf, A. A. (2009). Approaches to improve compatibility of starch filled polymer system: A review. Mat. Sci. Eng. C, 29, 2370–2377.
  • 7. Tang, X., & Alavi, S. (2011). Recent advances in starch, polyvinyl alcohol based polymer blends, nanocomposites and biodegradability. Carbohydr. Polym., 85, 1–16.
  • 8. Abramowska, A., Cieśla, K. A., Buczkowski, M. J., Nowicki, A., & Głuszewski, W. J. (2015). The influence of ionizing radiation on the properties of starch-PVA films. Nukleonika, 60(3), 669–677. DOI:10.1515/nuka-2015-0088.
  • 9. Priya, B., Gupta, V. K., Pathania, D., & Singha, A. S. (2014). Synthesis, characterization and antibacterial activity of biodegradable starch/PVA composite films reinforced with cellulosic fi bre. Carbohydr. Polym., 109, 171–179.
  • 10. Cieśla, K., Abramowska, A., Boguski, J., & Drewnik, J. (2017). The effect of PVA type and radiation treatment on the properties of starch-PVA films. Radiat. Phys. Chem., 141, 142–148. DOI:10.1016/jradphyschem.2017.06.015.
  • 11. Cano, A. I., Cháfer, M., Chiralt, A., & GonzalezMartinez, Ch. (2015). Physical and microstructural properties of biodegradable films based on pea starch and PVA. J. Food. Eng., 167, 59–64.
  • 12. Aydin, A. A., & Ilberg, V. (2016). Effect of different polyol-based plasticizers on thermal properties of polyvinyl alcohol: starch blends. Carbohydr. Polym.,136, 441–448.
  • 13. Mathew, Sh., Jayakumar, A., Kumar, V. P., Mathew, J., & Radhakrishnan, E. K. (2019). One-step synthesis of eco-friendly boiled rice starch blended polyvinylalcohol bionanocomposite films decorated with in situ generated silver nanoparticles for food packaging purpose. Int. J. Biol. Macromol., 139, 475–485.
  • 14. Tak, H. -Y., Yun, Y. -H., Lee, Ch. -M., & Yoon, S. -D. (2019). Sulindac imprinted mungbean starch/PVA biomaterial films as a transdermal drug delivery patch. Carbohydr. Polym., 208, 261–268.
  • 15. Parvin, F., Khan, M., Saadat, A. H. M., Khan, M. A. H., Islam, J. M. M., Ahmed, M., & Gafur, M. A. (2011). Preparation and characterization of gamma irradiated sugar containing starch/poly(vinyl alcohol)-based blend films. J. Polym. Environ., 19, 1013–1022.
  • 16. Senna, M. M., El-Shahat, H. A., & El Naggar, A. W. M. (2011). Characterization of gamma irradiated plasticized starch/poly(vinyl alcohol) (PLST/PVA) blends and their application as protected edible materials. J. Polym. Res., 18, 763–771.
  • 17. Naznin, M., Abedin, M. -Z., Khan, M. -A., & Gafur, M. D. (2012). Infl uence of Acacia Catechu extracts and urea and gamma irradiation on the mechanical properties of starch/PVA-based material. International Scholarly Research Network (ISRN) Polymer Science, 2012, 348685(8p). DOI:10.5402/2012/348685.
  • 18. Haji-Saeid, M., Sampa, M. H. O., & Chmielewski, A. G. (2007). Radiation treatment for sterilization of packaging materials. Radiat. Phys. Chem., 76, 1535–1541.
  • 19. Silvestre, C., Pezzuto, M., Duraccio, D., Marra, A., & Cimmino, S. (2014). Exploiting nanotechnology and radiation technologies to develop new eco-sustainable nanomaterials for food packaging suitable for sterilization by irradiation. In Application processed nanomaterials in products from polymers for agricultural applications (pp. 99–104). Vienna: IAEA. (IAEA-TECDOC-1745).
  • 20. Silvestre, C., Cimmino, S., Stoleru, E., & Vasile, C. (2017). Application of radiation technology to food packaging. In Y. Sun & A. G. Chmielewski (Eds.), Application of ionizing radiation in materials processing (pp. 461–484). Warsaw: Institute of Nuclear Chemistry and Technology.
  • 21. Farkas, J. (1998). Irradiation as a method for decontaminating food. A review. Int. J. Food Microbiol., 44, 189–204.
  • 22. Giroux, M., & Lacroix, M. (1998). Nutritional adequacy of irradiated meat – a review. Food Res. Int., 31(4), 257–264.
  • 23. Farkas, J. (2006). Irradiation for better foods. Trends Food Sci. Technol., 17, 148–152.
  • 24. World Health Organization. (1995). International Consutative Group on Food Irradiation. Review of data of high dose (10–70 kGy) irradiation of food: report of a consultation, Karlsruhe, 29 August – 2 September 1994. WHO. (WHO/FNU/FOS/95.10).
  • 25. Al-Kaisey, M. T., Alvan, A. -K. H., Mohammad, M. H., & Saeed, A. H. (2003). Effect of gamma irradiation on anti-nutritional factors in broad bean. Radiat. Phys. Chem., 67, 493–496.
  • 26. Kim, J. -H., Kim, D. -H., Ahn, H. -J., Park, H. -J., & Byun, M. W. (2005). Reduction of the biogenic amine contents in low salt-fermented soybean paste by gamma irradiation. Food Control, 16, 43–49. 27. Lee, J. -W., Kim, J. -H., Oh, S. -H., Byun, E. -H.,Yook, H. -S., Kim, M. -R., Kim, K. -S., & Byun, M. -W. (2008) Effect of gamma irradiation on viscosity reduction of cereal porridges for improving energy density. Radiat. Phys. Chem., 77, 352–365.
  • 28. Cieśla, K. A., Nowicki, A., & Buczkowski, M. J. (2010). Radiation modifi cation of the functional properties of the edible films prepared using starch and starch-lipid system. Nukleonika, 55(2), 233–242.
  • 29. Ibrahim, S. M. (2011). Characterization, mechanical, and thermal properties of gamma irradiated starch films reinforced with mineral clay. J. Appl. Polym. Sci., 119, 685–692.
  • 30. Ryzhkova, A., Jarzak, U., Schäffer, A., Bämer, M., & Swiderek, P. (2011). Modification of surface properties of thin polysaccharide films by low energy electron exposure. Carbohydr. Polym., 83, 608–615. DOI:10.1016/j.carbpol.2010.08.029.
  • 31. Stoica-Guzun, A., Stroescu, M., Jipa, I., Dobre, L., & Zaharescu, T. (2013). Effect of γ irradiation on poly(vinylalcohol) and bacterial cellulose composites used as packaging. Radiat. Phys. Chem., 84, 200–204.
  • 32. Wang, Sh. -M., Huang, Q. -Z., & Wang, Q. -Sh. (2005). Study on the synergetic degradation of chitosan with ultraviolet light and hydrogen peroxide. Carbohydr. Res., 340(6) 1143–1147.
  • 33. Głuszewski, W., Boruc, B., Kubera, H., & Abbasowa, D. (2015). The use of DRS and GC to studies the effects of ionizing radiation on paper artifacts. Nukleonika, 60(3), 665–668. DOI:10.1515/nuka2015-0090.
  • 34. Zagórski, Z. P., & Rafalski, A. (1998). Free radicals in irradiated unstabilized polypropylene, as seen by DRS absorption-spectrophotometry. Radiat. Phys. Chem., 52, 257–260.
  • 35. Milosavljevic, B. H., & Thomas, J. K. (2001) Effects of the degree of hydrolysis on radiation induced reactions in the poly(vinyl alcohol)–poly(vinyl acetate) system. Radiat. Phys. Chem., 62, 3–10.
  • 36. von Sontag, C. (2001). Carbohydrates. In: C. D. Jonah & B. S. M. Rao (Eds.), Radiation chemistry. Present status and future trends (pp. 481–511). Amsterdam: Elsevier Sciences BV.
  • 37. Relleve, L., Nagasawa, N., Luan, L. Q., Yagi, T., Aranilla, C., Abad, L., Kume, T., Yoshii, F., & dela Rosa, A. (2005). Degradation of carrageenan by radiation. Polym. Degrad. Stabil., 87, 403–410. DOI:10.1016/j.polymdegradstab.2004.09.003.
  • 38. Sharpatyi, V. A. (2003). Radiation chemistry of polysaccharides. 1. Mechanism of carbon monoxide and formic acid formation. High. Energ. Chem., 37(6), 369–372.
  • 39. Cao, Sh., Zhang, H., Song, Y., Zhang, J., Yang, H.,Jiang, L., & Dan, Y. (2015). Investigation of polypyrrole/polyvinyl alcohol–titanium dioxide composite films for photo-catalytic applications. Appl. Surf. Sci., 342(1), 55–63.
  • 40. Akhter, S., Allan, K., Buchanan, D., Cook, J. A.,Campion, A., & White, J. M. (1988). XPS and IR study of X-ray induced degradati on of PVA polimer film. Appl. Surf. Sci., 35(2), 241–258. https://doi.org/10.1016/0169-4332(88)90053-0.
  • 41. El-Sawy, N. M., El-Arnaouty, M. B., & Abdel, G. (2010). γ-Irradiation effect on the non-cross-linked and cross-linked polyvinyl alcohol films. Polym. Plast. Technol. Eng., 49(2), 169–177.
  • 42. Zainuddin, , Hill, D. J. T., & Le, T. T. (2001). An ESR study on γ-irradiated poly(vinyl alcohol). Radiat. Phys. Chem., 62, 283–291.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8e75b00b-8d24-4236-834f-1e425cb82b9f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.