PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Impact of cavity edges shape on aerodynamic noise

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this article, the analysis of influence of cavity edge shapes on flow-generated noise is performed. The acoustic wave propagation in the channel, that result from the flow, was analyzed. Shape of upstream and downstream edges was modified. The hybrid method based on Navier-Stokes and Perturbed Convective Wave Equation was used to solve the unidirectional coupling. The research showed a significant influence of the modification of the shape of the cavity edges on the generated noise. The change of downstream corner allowed for significant reduction of noise in the entire analysed band and allowed for the reduction of overall sound pressure level (OASPL) by 5 dB. Modifications of the upstream edge did not bring such differences, change in OASPL was up to 1 dB. The obtained spectra of the sound pressure level showed compliance with the calculated natural frequencies of the analysed object, as well as with some of the Rossiter modal frequencies, typical for the phenomena occurring in the cavities.
Rocznik
Strony
art. no. 2022301
Opis fizyczny
Bibliogr. 26 poz., il. kolor., wykr.
Twórcy
  • AGH University of Science and Technology, Department of Power Systems and Environmental Protection Facilities, 30 Mickiewicza Av., 30-059 Kraków, Poland
  • AGH University of Science and Technology, Department of Power Systems and Environmental Protection Facilities, 30 Mickiewicza Av., 30-059 Kraków, Poland
Bibliografia
  • 1. D. Rockwell, E. Naudascher; Review - Self-Sustaining Oscillations of Flow Past Cavities; J. Fluids Eng. 1978, 100(2), 152-165. DOI: 10.1115/1.3448624
  • 2. X. Gloerfelt, Cavity Noise, 2007.
  • 3. S. Kikuchi, Y. Fukunishi, Active flow control technique using piezo-film actuators applied to the sound generation by a cavity, Proceedings of the 3rd ASME/JSME Joint Fluids Engineering Conference, 1999.
  • 4. L. Chatellier, J. Laumonier, Y. Gervais, Active control of the aeroacoustics of cavity flows from the downstream edge, C. R. Mecanique 2006, 334(4), 259-265, DOI: 10.1016/j.crme.2006.03.003
  • 5. D. R. Williams, D. Fabris, K. Iwanski, J. Morrow, Closed-loop control in cavities with unsteady bleed forcing, AIAA-2000-0470, 2000.
  • 6. P. Łojek, K. Suder-Dębska, M. Mach, Influence of Cavity Edges Shape on Flow Induced Noise, Vibrations in Physical Systems 2021, 32(1), 2021110.
  • 7. J.C.F. Pereira, J.M.M. Sousa, Influence of Impingement Edge Geometry on Cavity Flow Oscillations, AIAA Journal 1994, 32(8), 1737-1740, DOI: 10.2514/3.12168
  • 8. A. Rona, X.X. Chen, Control of Cavity Flow Oscillation through Leading Edge Flow Modification, 36th AIAA Aerospace Sciences Meeting and Exhibit, 1998.
  • 9. J. S. Hsu, K.K. Ahuja, Cavity noise control using Helmholtz resonators, AIAA 96-1675, 1996.
  • 10. M. J. Stanek, J.A. Ross, J. Odedra, J. Peto, High Frequency Acoustic Suppression - The Mystery of the Rod-in-Crossflow Revealed 2003, AIAA 2003-0007.
  • 11. M.J. Lighthill, M.H. Newman, On sound generated aerodynamically I. General theory, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 1952, 211(1107).
  • 12. N. Curle, The Influence of Solid Boundaries upon Aerodynamic Sound, Proceedings of the Royal Society 1955, 231, 505-514.
  • 13. M. Kaltenbacher, Numerical Simulation of Mechatronic Sensors and Actuators. Finite Elements for Computational Multiphysics, Springer Science+Buissness Media, 2015.
  • 14. J.C. Hardin, D.S. Pope, An Acoustic/Viscous Splitting Technique for Computational Aeroacoustics, Theoretical and Computational Fluid Dynamics 1994, 6, 5-6.
  • 15. M. Kaltenbacher et al., Computational aeroacoustics for rotating systems with application to an axial fan, AIAA Journal 2017, 55(11). DOI: doi.org/10.2514/1.J055931
  • 16. I. Czajka, Modelowanie zjawisk akustycznych w przepływach aerodynamicznych, Wydawnictwa AGH, 2019.
  • 17. R. Ewert, W. Schroder, Acoustic Perturbation equations based on flow decomposition via source filtering, Journal of Computational Physics 2003, 188(2), 365-398.
  • 18. S. Schoder et al, Application Limits of Conservative Source Interpolation Methods Using a Low Mach Number Hybrid Aeroacoustics Workflow, Journal of Theoretical and Computational Acoustics 2021, 29(1), 2050032. DOI: 10.1142/S2591728520500322
  • 19. H.G. Weller, G. Tabor, H. Jasak, C. Fureby, A tensorial approach to computational continuum mechanics using object-oriented techniques, Computers in Physics 1998, 12(6), DOI: 10.1063/1.168744
  • 20. M. Strelets, Detached Eddy Simulation of massively separated flows, 39th Aerospace Sciences Meeting and Exhibit, 2001.
  • 21. R. Issa, Solution of the implicitly discretized fluid flow equation by operator-splitting, Journal of Computational Physics 1986, 62 (1), 40-65. DOI: 10.1016/0021-9991(86)90099-9
  • 22. F. R. Menter, Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications, AIAA Journal 1994, 32(8).
  • 23. S. Pankatar, Numerical Heat Transfer and Fluid Flow, Taylor & Francis, 1980.
  • 24. J.E. Rossiter, Wind-Tunnel Experiments on the Flow over Rectangular Cavities at Subsonic and Transonic Speeds, Aeronautical Research Council Reports and Memoranda, p. 3438, 1964.
  • 25. R. Ma, P.E. Slaboch, S.C. Morris, Fluid mechanics of the flow-excited Helmholtz resonator, J. Fluid Mech. 2009, 623, 1-26. DOI: 10.1017/S0022112008003911
  • 26. S. Weyna, Rozpływ energii akustycznych źródeł rzeczywistych (in Polish), WNT, 2005.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8e6a22f4-8423-48bf-aae9-c5c5033ef7fe
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.