PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Oil identification based on total synchronous spectra

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Contribution of marine carriage in the global transport is in permanent developing. It leads to increase the unintentional oil spills, which may induce serious disturbances in functioning of the natural marine ecosystem, especially when it interferes with other technical activities in the marine space. That fact contributes to increase the interest in searching of new research techniques to protect the natural ecosystem. Therefore, the main task of marine international organisations concentrates on the effective and rapid detection of oil spill and on the possibility of identifying oil pollutants as well as on origin of pollution. The purpose of the study is to characterise the oil belonging to the vessel engine lubricate oils. We analyse the stage results of investigations based on one of types of fluorescence spectroscopy, namely: synchronous spectra. To characterise the oil, the Aqualog Horiba spectrofluorometer was applied, which allows performing precise measurement in a short time. Based on the measured excitation-emission spectra, total synchronous fluorescence spectra for oil were obtained using various wavelength intervals. Total synchronous fluorescence spectra of petroleum substances allow finding wavelength interval typical for particular type of oil. This approach could allow obtaining of complex mixtures, such as oils, more efficient description. We discuss the total synchronous fluorescence spectra for engine oil (Marinol type) dissolved in n-hexane in various concentrations of oil as a possible tool proposed to oil type identification. We present changes and variation of the total synchronous fluorescence spectra for oil with various oil concentrations.
Twórcy
  • Gdynia Maritime University, Faculty of Marine Engineering Department of Physics Morska Street 81-87, 81-225 Gdynia, Poland tel.:+48 58 6901504, fax: +48 58 6206701
autor
  • Gdynia Maritime University, Faculty of Marine Engineering Department of Physics Morska Street 81-87, 81-225 Gdynia, Poland tel.:+48 58 6901504, fax: +48 58 6206701
Bibliografia
  • [1] Baszanowska, E., Zieliński, O., Otremba, Z., Toczek, Ff., Influence of oil-in-water emulsions on fluorescence properties as observed by excitation-emission spectra, J. Europ. Opt. Soc. Rap. Public. Vol. 8, No. 13069, pp. 13069-1-1369-5, 2013.
  • [2] Baszanowska, E., Otremba, Z., Spectroscopic methods in application to oil pollution detection in the sea, Journal of KONES Powertrain and Transport, Vol. 19, No. 1, 15-20, 2012.
  • [3] Baszanowska, E., Otremba, Z., Toczek, H., Rohde, P., Fluorescence spectra of oil after it contacts with aquatic environment, Journal of KONES Powertrain and Transport, Vol. 20, No. 3, pp. 29-34, Warsaw, Poland 2013.
  • [4] Baszanowska, E., Otremba, Z., Rohde, P., Zieliński, O., Adoption of the time resolved fluorescence to oil type identification, Journal of KONES Powertrain and Transport, Vol. 18, No. 2, 25-29, Warsaw, Poland 2011.
  • [5] Dolenko, T. A., Fadeev, V. V.,Gerdova, I. V., Dolenko, S. A., and Reuter, R., Fluorescence diagnostics of oil pollution in coastal marine waters by use of artificial neural networks, Applied Optics, Vol. 41, No. 24, 5155-5166, 2002.
  • [6] Downare, T. D., Mullinst, O. C, Visible and Near-Infrared Fluorescence of Crude Oils, Applied Spectroscopy, Vol. 49, No. 6, 1995.
  • [7] Drozdowska, V., Freda, W., Baszanowska, E., Rudź, K., Darecki, M., Heldt, J., Toczek, H., Spectral properties of natural and oil polluted Baltic seawater - results of measurements and modelling, Eur. Phys. J. Special Topics, Vol. 222, No. 9, pp. 2157-2170, 2013.
  • [8] Evans, S., Shipping and oil production, Chapter 10 in Ecology and animal health, Norrgren E., Levengood J. M., 2012.
  • [9] Fingas, M., Brown, C, Review of oil spill remote sensors, Seventh International Conference on Remote Sensing for Marine and Coastal Environments, Miami, Florida, 20-22 May 2002. http ://www .ecy. wa. gov/programs/spills/response/taskforce/Veridian%20Miami%20F ingas. pdf
  • [10] Geddes, C. D., Lakowicz, J. R., Review in fluorescence 2005, Springer, 2005.
  • [11] HELCOM, Baltic Marine Protection Commission, Response Group http://www.helcom.fi/groups/response/en_GB/main/.
  • [12] Lloyd, J. B. F., Synchronyzed excitation of fluorescence emission spectra, Nature (London) Phys. Sci., 231, 64-65, 1971.
  • [13] Operation manual, Aqualog Horiba, rev. A, 2011.
  • [14] Otremba, Z., Baszanowska, E., Toczek, H., Rohde, P., Spectrofluorymetry in application to oil-in-water emulsion characterization, Journal of KONES Powertrain and Transport, Vol. 18, No. 3, 317-321, Warsaw, Poland 2011.
  • [15] Patra, D., Mishra, A. K., Total synchronous fluorescence scan spectra of petroleum products, Anal. Bioanal. Chem., Vol. 373, Is. 4-5, 304-309,2002.
  • [16] Patra, D., Mishra, A. K., Recent developments in multi-component synchronous fluorescence scan analysis, Trends in analytical chemistry, Vol. 21, No. 12, 2002.
  • [17] Poryvkina, L., Babichenko, S., Davydova, O., SFS characterisation of oil pollution in natural water, Proc. 5th Intern. Conf. on Remote Sensing for Marine and Coastal Environments, Vol. 2, 520-524, San Diego, California 1998.
  • [18] Robbe, N., Zieliński, O., Airborne remote sensing of oil spills - analysis and fusion of multi-spectral near range data, J. Mar. Sci. Environ., C2, 19-27, 2004.
  • [19] Rohde, P., Busch, J. A., Henkel, R. H., Voss, D., Zieliński, O., Detection and identification of hydrocarbons in marine waters using time-resolved laser-fluorescence: set-up and first results of a new submersible sensor, Proceedings OCEANS 2009 - EUROPE, pp. 1-5, Bremen 2009.
  • [20] Rudź, K., Baszanowska, E., Rohde, P., Zieliński, O., Fluorescence Methods and Monte Carlo Radiative Transfer Simulation Applied to Oil Detection in Baltic Sea, Joint Proceedings, 24, Bremerhaven2011.
  • [21] Shaver, M., McGown, L.B., Fluorescence Studies of Complex Coal Liquid Samples Using the Lifetime Synchronous Spectrum (LiSS), Appl. Spectrosc, Vol. 49, No. 6, 813-818, 1995.
  • [22] Skou, N., Sorensen, B., Poulson, A., A New Airborne Dual Frequency Microwave Radiometer for Mapping and Quantifying Mineral Oil on the Sea Surface, in: Proceedings of the Second Thematic Conference on Remote Sensing for Marine and Coastal Environments, ERIM Conferences, Ann Arbor, pp. 11559-11565, Michigan 1994.
  • [23] Wang, Z., Stout, S., Oil Spill Environmental Forensics: Fingerprinting and Source Identification, Elsevier, 2007.
  • [24] Zieliński, O., Busch, J. A., Cembella, A. D., Daly, K. L., Engelbrektsson, J., Hannides, A. K. & Schmidt, H., Detecting marine hazardous substances and organisms: sensors for pollutants, toxins and pathogens, Ocean Science, Vol. 5, No.3, 329-349, 2009.
  • [25] Zieliński, O., Dittmar, T., Rohde, P., Ungermann, R., Voss, D., CDOM and PAHs in the Marine Environment – in situ Sensing with Time Resolved Fluorescence and Liquid Core Waveguides, Ocean Optics XX, Anchorage 2010.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8e69d28e-1267-41e4-b09d-c3e1f2ec9313
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.