PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Hybrid polymer composites with enhanced energy absorption

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Hybrydowe kompozyty polimerowe o zwiększonej absorpcji energii
Języki publikacji
EN
Abstrakty
EN
This paper presents the influence of the type and structure of reinforcement, on the epoxy resin matrix polymer composites mechanical and ballistic properties. Aramid, basalt, glass fabrics and their hybrid systems were used as reinforcement. Impact strength according to Izod and “falling arrowhead”, flexural strength and structure of the obtained composites were tested. The specific gravity was also determined. The aramid-glass hybrid composites showed high flexural strength (397 MPa) and Young’s modulus (21 GPa). However, aramid-basalt composites had high impact strength (116 kJ/m2) and impact energy absorption (45 J).
PL
W artykule przedstawiono wpływ rodzaju i struktury wzmocnienia na właściwości mechaniczne oraz balistyczne kompozytów polimerowych na osnowie żywicy epoksydowej. Jako wzmocnienie zastosowano tkaniny aramidowe, bazaltowe, szklane oraz ich układy hybrydowe. Zbadano udarność wg Izoda i „spadającego grota”, wytrzymałość na zginanie i strukturę otrzymanych kompozytów. Oznaczono również ciężar właściwy. Hybrydowe kompozyty amidowo-szklane wykazały dużą wytrzymałość na zginanie (397 MPa) i moduł Younga (21 GPa). Natomiast kompozyty aramidowo-bazaltowe cechowały się wysoką udarnością (116 kJ/m2) i dużą absorpcją energii uderzenia (45 J).
Czasopismo
Rocznik
Strony
552--560
Opis fizyczny
Bibliogr. 41 poz., rys., tab., wykr.
Twórcy
autor
  • Doctoral School of Engineering and Technical Sciences at the Rzeszow University of Technology, al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland
  • Rzeszow University of Technology, Department of Polymer Composites, Faculty of Chemistry, al. Powstańców Warszawy 6, 35-959 Rzeszów, Poland
autor
  • Rzeszow University of Technology, Department of Polymer Composites, Faculty of Chemistry, al. Powstańców Warszawy 6, 35-959 Rzeszów, Poland
  • Doctoral School of Engineering and Technical Sciences at the Rzeszow University of Technology, al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland
Bibliografia
  • [1] Zurina A., David N.V.: AIP Conference Proceedings 2019, 2134, 050010. https://doi.org/10.1063/1.5120225
  • [2] Ciesielska-Wróbel I.L.: “Textiles for Advanced Applications”, IntechOpen, London 2017. https://doi.org/10.5772/intechopen.69085
  • [3] Rodríguez Vara R.: Numerical analysis of the ballistic behaviour on aramid aircraft structure (Bachelor’s thesis) 2019.
  • [4] Czech K., Oliwa R., Krajewski D., et al.: Materials 2021, 14, 3047. https://doi.org/10.3390/ma14113047
  • [5] Konieczny J.: Przetwórstwo Tworzyw 2011, 17, 29.
  • [6] Farias-Aguilar J.C., Ramírez-Moreno M.J., Gonzalez-García D.M., et al.: Journal of Materials Research and Technology 2021, 12, 1606. https://doi.org/10.1016/j.jmrt.2021.03.088
  • [7] Ojoc G.G., Pirvu C., Sandu S., et al.: IOP Conference Series: Materials Science and Engineering 2019, 485, 012019. https://doi.org/10.1088/1757-899X/485/1/012019
  • [8] da Cunha R.D., da Cunha R.A.D., de Amorim Junior W.F., et al.: Journal of Materials Engineering and Performance 2020, 29, 5001. https://doi.org/10.1007/s11665-020-05015-1
  • [9] Shaari N., Abdul Wahab M.F., Shaari N.S., et al.: Materials Today: Proceedings 2021, 46, 1595. https://doi.org/10.1016/j.matpr.2020.07.249
  • [10] Bao J., Wang Y., An R., et al.: Defence Technology 2022, 18, 1822. https://doi.org/10.1016/j.dt.2021.09.009
  • [11] Yang Z., Liu J., Wang F., et al.: Composite Structures 2019, 229, 111434. https://doi.org/10.1016/j.compstruct.2019.111434
  • [12] Karamooz M.R., Rahmani H., Khosravi H.: Fibers and Polymers 2020, 21, 2590. https://doi.org/10.1007/s12221-020-1418-z
  • [13] Nawafleh N., Elibol F.K.E., Aljaghtham M., et al.: Journal of Materials Science 2020, 55, 11284. https://doi.org/10.1007/s10853-020-04826-w
  • [14] Singh T.J., Samanta S.: Materials Today: Proceedings 2015, 2, 1381. https://doi.org/10.1016/j.matpr.2015.07.057
  • [15] Abtew M.A., Boussu F., Bruniaux P., et al.: Composite Structures 2019, 223, 110966. https://doi.org/10.1016/j.compstruct.2019.110966
  • [16] Wang S., Ma J., Feng X., et al.: Polymer Composites 2020, 41, 1614. https://doi.org/10.1002/pc.25483
  • [17] Chhetri S., Bougherara H.: Composites Part A: Applied Science and Manufacturing 2021, 140, 106146. https://doi.org/10.1016/j.compositesa.2020.106146
  • [18] Belgacemi R., Derradji M., Trache D., et al.: Polymer Composites 2020, 41, 4526. https://doi.org/10.1002/pc.25730
  • [19] Belgacemi R., Derradji M., Trache D., et al.: Polymer Composites 2021, 42, 462. https://doi.org/10.1002/pc.25839
  • [20] Han L., Cai H., Chen X., et al.: Polymers 2020, 12, 521. https://doi.org/10.3390/polym12030521
  • [21] Vidya Mandal L., Verma B., et al.: Materials Today: Proceedings 2020, 26, 3161. https://doi.org/10.1016/j.matpr.2020.02.652
  • [22] Morampudi P., Namala K.K., Gajjela Y.K., et al.: Materials Today: Proceedings 2021, 43, 314. https://doi.org/10.1016/j.matpr.2020.11.669
  • [23] Balaji K.V., Shirvanimoghaddam K., Rajan G.S., et al.: Materials Today Chemistry 2020, 17, 100334. https://doi.org/10.1016/j.mtchem.2020.100334
  • [24] Murase H., Yabuki K.: “High-Performance and Specialty Fibers”, Springer, Tokyo 2016, p.83. https://doi.org/10.1007/978-4-431-55203-1_5
  • [25] Wang D., Ju Y., Shen H., et al.: Construction and Building Materials 2019, 197, 464. https://doi.org/10.1016/j.conbuildmat.2018.11.181
  • [26] Dhand V., Mittal G., Rhee K.Y., et al.: Composites Part B: Engineering 2015, 73, 166. https://doi.org/10.1016/j.compositesb.2014.12.011
  • [27] Bandaru A.K., Ahmad S., Bhatnagar N.: Composites Part A: Applied Science and Manufacturing 2017, 97, 151. https://doi.org/10.1016/j.compositesa.2016.12.007
  • [28] Kalai Thendral K., Abraham Antony D.: IOP Conference Series: Materials Science and Engineering 2020, 912, 052023. https://doi.org/10.1088/1757-899X/912/5/052023
  • [29] Sun G., Chen D., Zhu G., et al.: Thin-Walled Structures 2022, 172, 108760. https://doi.org/10.1016/j.tws.2021.108760
  • [30] Hasan K.M.F., Horváth P.G., Alpár T.: Journal of Materials Science 2021, 56, 14381. https://doi.org/10.1007/s10853-021-06177-6
  • [31] Zuo P., Srinivasan D.V., Vassilopoulos A.P.: Composite Structures 2021, 274, 114358. https://doi.org/10.1016/j.compstruct.2021.114358
  • [32] Swolfs Y., Gorbatikh L., Verpoest I.: Composites Part A: Applied Science and Manufacturing 2014, 67, 181. https://doi.org/10.1016/j.compositesa.2014.08.027
  • [33] Masoumi M., Mansoori H., Dastan T., et al.: Composite Structures 2022, 284, 115231. https://doi.org/10.1016/j.compstruct.2022.115231
  • [34] Chen D., Xiao S., Yang B., et al.: Composite Structures 2022, 294, 115640. https://doi.org/10.1016/j.compstruct.2022.115640
  • [35] Hashim N., Majid D.L.A., Mahdi E.-S., et al.: Composite Structures 2019, 212, 476. https://doi.org/10.1016/j.compstruct.2019.01.036
  • [36] Azimpour-Shishevan F., Akbulut H., Mohtadi-Bonab M.A.: Fibers and Polymers 2020, 21, 2579. https://doi.org/10.1007/s12221-020-9843-6
  • [37] Cho J., Park J.: Materials Research Express 2021, 8, 125304. https://doi.org/10.1088/2053-1591/ac406f
  • [38] Pujar N.V., Nanjundaradhya N.V., Sharma R.S.: Materials Research Express 2022, 9, 025304. https://doi.org/10.1088/2053-1591/ac4f88
  • [39] Karamooz M.R., Rahmani H., Khosravi H.,: Polymer Composites 2021, 42, 6442. https://doi.org/10.1002/pc.26310
  • [40] Rezasefat M., Gonzalez-Jimenez A., Ma D., et al.,: Thin-Walled Structures 2022, 177, 109458. https://doi.org/10.1016/j.tws.2022.109458
  • [41] Saroj S., Nayak R.K.,: Transactions of the Indian Institute of Metals 2021, 74, 2651. https://doi.org/10.1007/s12666-021-02347-x
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8e6868b6-ddef-4024-ae84-d8ce6942297e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.