PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of the Plackett-Burman Design on Soil Fertility Determinants

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the present review article, a soil from the region of Fez-Sefrou Morocco was screened for some physicochemical characteristics using the Plackett-Burman model in order to determine the most important factors that promote its fertility. Five independent variables were selected: pH, electrical conductivity, humidity, organic matter, and C/N ratio. These variables were evaluated by statistical analysis, based on their significance, the value of the coefficient of determination and the Pareto chart. The results suggest that humidity and C/N ratio have an influence with a high level of confidence, while the other three show no significant effect on the content of nutrients in the soil. The analysis of the R2 variance value also showed that the models used for prediction were large and significant factors (p less than 0.05). Pareto chart plots for each response and its characteristics provided accurate data to select well-fitting variables for further optimization.
Rocznik
Strony
254--263
Opis fizyczny
Bibliogr. 47 poz., rys., tab.
Twórcy
  • Engineering Laboratory of Organometallic, Molecular, and Environmental Materials. Faculty of Sciences Dhar Mahraz, Sidi Mohamed Ben Abdellah University, Fez 30 000, Morocco
  • Engineering Laboratory of Organometallic, Molecular, and Environmental Materials. Faculty of Sciences Dhar Mahraz, Sidi Mohamed Ben Abdellah University, Fez 30 000, Morocco
  • Engineering Laboratory of Organometallic, Molecular, and Environmental Materials. Faculty of Sciences Dhar Mahraz, Sidi Mohamed Ben Abdellah University, Fez 30 000, Morocco
  • Laboratoire Ressources Naturelles et Environnement, Faculté Polydisciplinaire de Taza, Taza, Marocco
  • Industrial Management, Energy and Technology of Plastic and Composite Materials Laboratory, ENSEM, Casablanca, Marocco
  • Engineering Laboratory of Organometallic, Molecular, and Environmental Materials. Faculty of Sciences Dhar Mahraz, Sidi Mohamed Ben Abdellah University, Fez 30 000, Morocco
  • Engineering Laboratory of Organometallic, Molecular, and Environmental Materials. Faculty of Sciences Dhar Mahraz, Sidi Mohamed Ben Abdellah University, Fez 30 000, Morocco
autor
  • Engineering Laboratory of Organometallic, Molecular, and Environmental Materials. Faculty of Sciences Dhar Mahraz, Sidi Mohamed Ben Abdellah University, Fez 30 000, Morocco
Bibliografia
  • 1. AFNOR. 2004. Evaluation de la qualité des sols, volume 1: méthodes d’analyses chimiques, volume 2 : méthodes d’analyses physiques et biologiques. (2004) E210-58.
  • 2. AFNOR. 2015. Matières fertilisantes et support des cultures, Recueil sur CDROM Référence: 31845271 CD, ISBN 978-2-12-184271-4.
  • 3. Agegnehua, G., Nelsona, P.N., Birda, M.I. 2016. Crop yield, plant nutrient uptake and soil physico- chemical properties under organic soil amendments and nitrogen fertilization on Nitisols. Soil & Tillage Research, 160 1–13.
  • 4. Anupam, K., Swaroop, V., Lal, P.S., Bist, V. 2015. Turning Leucaena leucocephala bark to biochar for soil application via statistical modelling and optimization technique. Ecological Engineering, 82, 26–39.
  • 5. Arenberg, M.R., Arai, Y. 2019. Uncertainties in soil physicochemical factors controlling phosphorus mineralization and immobilization processes. Advances in Agronomy, 154, 153–200.
  • 6. Atemni, I., Mehdaoui, I., Majbar, Z., Ainane, A., El Haji, M., Ben Abbou, M., Taleb, M., Rais, Z. 2022. Monitoring composting process of olive by-products and assessment of compost maturity.Environmental Engineering and Managment Journal, 8(21).
  • 7. Ben Abbou, M. 2014. Impact des lixiviats de la décharge sauvage de la ville de Taza sur les ressources hydriques.
  • 8. Bonanomi, G., Sarker, T. C., Zotti, M., Cesarano, G., Allevato, E., Mazzoleni, S. 2019. Predicting nitrogen mineralization from organic amendments: beyond C/N ratio by 13C-CPMAS NMR approach. Plant and Soil, 441(1), 129–146.
  • 9. Carrara M., Kelly M.T., Roso F., Larroque M., Margout D. 2021. Potential of Olive Oil Mill Wastewater as a Source of Polyphenols for the Treatment of Skin Disorders: A Review. Journal of Agriculture and Food Chemistry, 69, 7268−7284.
  • 10. Christina, M., Le Maire, G., Nouvellon, Y., Vezy, R., Bordon, B., Battie-Laclau, P., Laclau, J.P. 2018. Simulating the effects of different potassium and water supply regimes on soil water content and water table depth over a rotation of a tropical Eucalyptus grandis plantation. Forest Ecology and Management, 418, 4–14.
  • 11. Duguet, F. 2005. Minéralisation de l’azote et du phosphore dans les sols organiques cultivés du sudouest du Québec.
  • 12. Ekpenyong, M., Antai, S., Asitok, A., Ekpo, B. 2017. Response surface modeling and optimization of major medium variables for glycolipopeptide production. Biocatalysis and agricultural biotechnology, 10, 113–121.
  • 13. Elamin, A.M. 2019. Energetic valorization of olive waste water (liquid waste) by methanic fermentation in north of Morocco. Environmental and Water Sciences, public Health and Territorial Intelligence Journal, 3(1), 53–59.
  • 14. Elkadri, A., Elfkih, S., Sahnoun, H., Albouchi, L., Abichou, M. 2019. Etude strategique et économique de la gestion des margines : ces des projets de décharge des margines au gouvernorat de sousse (Tunisie). Revue Ezzaitouna.
  • 15. Essahalea, A., Karrouch, L. 2015. Contribution a` l’étude de l’impact des huileries de la province d’El Hajeb sur l’environnement. Archives des Maladies Professionnelles et de l’Environnement 76:355-365 1775-8785X.
  • 16. FAO. 2020. Organisation des Nations Unies pour l’alimentation et l’agriculture, http://www.fao.org/news/archive/newsbydate/2020/fr/
  • 17. Fernández-Prior, Á., Trujillo-Reyes, Á., Serrano, A., Rodríguez-Gutiérrez, G., Reinhard, C., Fermoso, F.G. 2020. Biogas Potential of the Side Streams Obtained in a Novel Phenolic Extraction System from Olive Mill Solid Waste. Molecules, 25, 5438.
  • 18. Filippelli, G.M. 2008. The global phosphorus cycle: past, present, and future. Elements, 4(2), 89–95.
  • 19. Fujii, K., Yamada, T., Hayakawa, C., Nakanishi, A., Funakawa, S. 2020. Decoupling of protein depolymerization and ammonification in nitrogen mineralization of acidic forest soils. Applied Soil Ecology, 153, 103572.
  • 20. Geisseler, D., Horwath, W.R., Doane, T.A. 2009. Significance of organic nitrogen uptake from plant residues by soil microorganisms as affected by carbon and nitrogen availability. Soil Biology and Biochemistry, 41(6), 1281–1288.
  • 21. Gérardeaux, E. 2009. Adjustment of phenology, growth and dry matter production of cotton (Gossypium Hirsutum L.) facing potassium deficiency.
  • 22. Ghosh, S., Goswami, A.J., Ghosh, G.K., Pramanik, P. 2018. Quantifying the relative role of phytase and phosphatase enzymes in phosphorus mineralization during vermicomposting of fibrous tea factory waste. Ecological engineering, 116, 97–103.
  • 23. Guindo, S.S., Sacko, S., Goita, O., Diawara, B., Dabo, H., Dembele, C., Plea, M. 2021. Effet du taux d’humidité sur la minéralisation de différentes sources de matières organiques dans les sols sous cultures riz et blé au Mali. Symposium malien sur les sciences appliquées (MSAS).
  • 24. He, J., Wang, J., He, D., Dong, J., Wang, Y. 2011. The design and implementation of an integrated optimal fertilization decision support system. Mathematical and Computer Modelling, 54, 1167–1174.
  • 25. Karlapudi, A.P., Krupanidhi, S., Reddy, R., Indira, M., Md, N.B., Venkateswarulu, T.C. 2018. Plackett-Burman design for screening of process components and their effects on production of lactase by newly isolated Bacillus sp. VUVD101 strain from Dairy effluent. Beni-Suef University journal of basic and applied sciences, 7(4), 543–546.
  • 26. Kende, S. 2010. Minéralisation de l’azote dans deux sols amendés avec deux composts enrichis d’un antibiotique.
  • 27. Lahlou, K. 2019 Valorisation des boues dans la filière de compostage : élaboration et application.
  • 28. Lia, R., Taoa, R., Lingb, N., Chua, G. 2017.Chemical, organic and bio-fertilizer management practices effect on soil physicochemical property and antagonistic bacteria abundance of a cotton field: Implications for soil biological quality. Soil & Tillage Research, 167, 30–38.
  • 29. MAAAR. 2021. Ministére de l’Agriculture, de l’Alimentation et des Affaires Rurales. http://www.omafra.gov.on.ca/french/crops/hort/news/hortmatt/2016/11hrt16a2.htm consulted at 14\10\2021.
  • 30. Majbar, Z. 2019. Traitement des margines par un procédé couplant l’électrocoagulation et l’adsorption sur des charbons actifs de la sciure de bois d’eucalyptus et leur valorisation par la filière de compostage des déchets vinicoles.
  • 31. Malvi, U.R. 2011. Interaction of micronutrients with major nutrients with special reference to potassium. Karnataka Journal of Agricultural Sciences, 24(1).
  • 32. MAPM. 2021. Ministère de l’Agriculture et de la Pèche Maritime. - L’agriculture marocaine en chiffres. https://www.agriculture.gov.ma/fr/filiere/olivier.
  • 33. Marzi, M., Shahbazi, K., Kharazi, N., Rezaei, M. 2020. The influence of organic amendment source on carbon and nitrogen mineralization in different soils. Journal of Soil Science and Plant Nutrition, 20(1), 177–191.
  • 34. Mehdaoui, I., Majbar, Z., Atemni, I., Jennan, S., Ainane, T., Gaga, Y., Taleb, M., Rais, Z., Chetouani, A. 2021. What effects does an organic amendment to olive waste have on the soil and crop yield? Moroccan Journal of Chemistry, 9(4), 9–4.
  • 35. Mitran, T., Meena, R.S., Lal, R., Layek, J., Kumar, S., Datta, R. 2018. Role of soil phosphorus on legume production. In Legumes for soil health and sustainable management, 487–510.
  • 36. Muíño, I., Díaz, M.T., Apeleo, E., Pérez Santaescolástica, C., Rivas Cañedo, A., Pérez, C., Cañeque, V., Lauzurica, S., De la fuente, J. 2017. Valorisation of an extract from olive oil waste as a natural antioxidant for reducing meat waste resulting from oxidative processes. Journal of Cleaner production, 924–932.
  • 37. Pandey, C.B., Srivastava, R.C., Singh, R.K. 2009. Soil nitrogen mineralization and microbial biomass relation, and nitrogen conservation in humid‐tropics. Soil Science Society of America Journal, 73(4), 1142–1149.
  • 38. Rose, S., Nickolas, S., Sangeetha, S. 2018. Machine Learning and Statistical Approaches used in Estimating Parameters that Affect the Soil Fertility Status: A Survey. In 2018 Second International Conference on Green Computing and Internet of Things (ICGCIoT). IEEE, 381–385.
  • 39. Sáez, J.A., Pérez-Murcia, M.D., Vico, A., Martínez-Gallardo, M.R., Andreu-Rodríguez, F.J., López, M.J., Bustamante, M.A., Sanchez-Hernandez, J.C., Moreno, J., Moral R. 2021. Olive mill wastewater-evaporation ponds long term stored: Integrated assessment of in situ bioremediation strategies based on composting and vermicomposting. Journal of Hazardous Materials, 402, 123481.
  • 40. Scanlan, C.A., Bell, R.W., Brennan, R.F. 2015. Simulating wheat growth response to potassium availability under field conditions in sandy soils. II. Effect of subsurface potassium on grain yield response to potassium fertiliser. Field Crops Research, 178, 125–134.
  • 41. Seyedghasemi, S.M., Rezvani Moghaddam, P., Esfahani, M. 2021. Optimization of biochar and nitrogen fertilizer in rice cultivation. Journal of Plant Nutrition, 44(12), 1705–1718.
  • 42. Smita Tale K., Ingole S. 2015. A Review on Role of Physico-Chemical Properties in Soil Quality. Chemical Science Review and Letters, 4(13), 57–66.
  • 43. Wan, W., Hao, X., Xing, Y., Liu, S., Zhang, X., Li, X., Huang, Q. 2021. Spatial differences in soil microbial diversity caused by pH‐driven organic phosphorus mineralization. Land Degradation & Development, 32(2), 766–776.
  • 44. Wyszkowska, J., Kucharski, J., Lajszner, W. 2005. Enzymatic Activities in Different Soils Contaminated with Copper. Polish Journal of Environmental Studies, 14(5), 659–664.
  • 45. Yan, Z., Liu, P., Li, Y., Ma, L., Alva, A., Dou, Z., Zhang, F. 2013. Phosphorus in China’s intensive vegetable production systems: overfertilization, soil enrichment, and environmental implications. Journal of Environmental Quality, 42(4), 982–989.
  • 46. Yang, R., Xia, X., Wang, J., Zhu, L., Wang, J., Ahmad, Z., Chen, Y. 2020. Dose and time-dependent response of single and combined artificial contamination of sulfamethazine and copper on soil enzymatic activities. Chemosphere, 250, 126161.
  • 47. Yang, Y., Zhang, H., Shan, Y., Wang, J., Qian, X., Meng, T., Cai, Z. 2019. Response of denitrification in paddy soils with different nitrification rates to soil moisture and glucose addition. Science of the Total Environment, 651, 2097–2104.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8e606062-e088-4f4e-bb6b-453958ea45a5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.