PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Concept of an Autonomous Mobile Robot for Automating Transport Tasks in High-Bay Warehouses

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The progression of the industry, alongside the continuous enhancement of operational efficiency and the reduction of production costs, is paving the way for novel solutions in the realm of storage and transportation systems. The incorporation of new technologies and solutions, such as mobile robots, has culminated in the establishment of Smart Warehouses. It facilitates the reduction of non-value adding activities for companies. One of the methods of improving the efficiency of such systems is the more effective use of autonomous mobile robots. The article presents an inventive concept of an autonomous mobile robot capable of undertaking transport tasks both on the shop floor and within high-bay warehouses. The new concept of the drive mechanism enables it to navigate on surfaces and move along rail guides. By using an elevator, the robot can be lifted to higher levels within the warehouse. The well-conceived structural solution of the robot allows the elevator's placement anywhere within the warehouse, eliminating the need for constructing a pit. The use of a mobile robot with the proposed structure will enable the execution of transport tasks without necessitating reloading. Such an approach has the potential to increase efficiency and reduce the costs of storage processes.
Twórcy
  • Chair of Production Engineering, Faculty of Mechanical Engineering, Cracow University of Technology
  • Chair of Production Engineering, Faculty of Mechanical Engineering, Cracow University of Technology
Bibliografia
  • 1. Pereira Carvalho N., Cazarini E. Industry 4.0 - What Is It? In: Industry 4.0 – Current Status and Future Trends. IntechOpen, 2020.
  • 2. Rüßmann M., Lorenz M., Gerbert P., Waldner M., Justus J., Pascal E., et al. Industry 4.0: The Future of Productivity and Growth in Manufacturing Industries. Boston Consulting 2015; 1-5.
  • 3. Forcina A., Falcone D. The role of Industry 4.0 enabling technologies for safety management: A systematic literature review. Procedia Computer Science 2021; 180: 436-445.
  • 4. Hernández-Muñoz G., Habib-Mireles L., García-Castillo F., Montemayor-Ibarra F. Industry 4.0 and engineering education: an analysis of nine technological pillars inclusion in higher educational curriculum: Experiences from Latin America. Best Practices in Manufacturing Processes 2018; 525-543.
  • 5. Javaid M., Haleem A., Singh R., Suman R. Substantial capabilities of robotics in enhancing industry 4.0 implementation. Cognitive Robotics 2021;1: 58-75.
  • 6. Fragapane G., Ivanov D., Peron M., Sgarbossa F., Strandhagen J. Increasing flexibility and productivity in Industry 4.0 production networks with autonomous mobile robots and smart intralogistics. Annals of Operations Research. 2022; 308(1-2): 125-143.
  • 7. Ullrich G. The History of Automated Guided Vehicle Systems. In: Automated Guided Vehicle Systems. Springer, Berlin, Heidelberg 2015; 1-14.
  • 8. Lynch L., Newe T., Clifford J., Coleman J., Walsh J., Toal D. Automated Ground Vehicle (AGV) and sensor technologies-A review. In: Proceedings of the International Conference on Sensing Technology, 2018, 347-352.
  • 9. Ashoori E., Babagoli I., Alipour S. A new method for localization of wireless sensor networks based on path planning of mobile robots. Advances in Science and Technology Research Journal 2015; 9(28): 10-17.
  • 10. Reis W., Couto G., Junior O. Automated guided vehicles position control: a systematic literature review. Journal of Intelligent Manufacturing 2023; 34(4): 1483-1545.
  • 11. Di S., Guang-Mao T., Jiaqi L. Real-time localization measure and perception detection using multi-sensor fusion for Automated Guided Vehicles. In: Proc. of 40th Chinese Control Conference 2021, 3219-3224.
  • 12. Zhang J., Yang X., Wang W., Guan J., Ding L., Lee V. Automated guided vehicles and autonomous mobile robots for recognition and tracking in civil engineering. Automation in Construction 2023; 146.
  • 13. Trojnacki M. Modelowanie dynamiki mobilnych robotów kołowych. Oficyna Wydawnicza PIAP, 2013.
  • 14. Giergiel M., Hendzel Z., Żylski W. Modelowanie i sterowanie mobilnych robotów kołowych. Wydawnictwo Naukowe PWN, 2002.
  • 15. Miądlicki K., Pajor M. Overview of user interfaces used in load lifting devices. International Journal of Scientific & Engineering Research 2015; 6(9): 1215-1220.
  • 16. Miądlicki K., Pajor M., Saków M. Ground plane estimation from sparse LIDAR data for loader crane sensor fusion system. In: Proc of 22nd International Conference on Methods and Models in Automation and Robotics 2017, 717-722.
  • 17. Custodio L., Machado R. Flexible automated warehouse: a literature review and an innovative framework. International Journal of Advanced Manufacturing Technology 2020; 106(1-2): 533-558.
  • 18. van Geest M., Tekinerdogan B., Catal C. Smart warehouses: Rationale, challenges and solution directions. MDPI Applied Sciences 2022; 12(219).
  • 19. PROMAG SA. Miniload stacker crane;. Available from: https://promag.pl/produkty/systemy-skladowania/automatyczne-systemy-skladowania/regaly-z-ukladnicami/. Accessed on December 5, 2023.
  • 20. PROMAG SA. AutoMAG Shuttle semi-automatic dense storage system;. Available from:https://promag.pl/produkty/systemy-skladowania/automa-tyczne-systemy-skladowania/polautomatyczny-system-gestego-skladowania-automag-shuttle/. Accessed on December 5, 2023.
  • 21. PROMAG SA. AutoMAG Mover automatic dense storage system;. Available from:https://promag.pl/produkty/systemy-skladowania/automatyczne-systemy-skladowania/automatyczny-system-gestego-skladowania-automag-mover/. Accessed on December 5, 2023.
  • 22. SRSI. RAFT. Available from: https://www.srsi.com/raft/. Accessed on December 5, 2023.
  • 23. Geek+. RoboShuttle System. Available from: https://www.geekplus.com/product/roboshuttle. Accessed on December 5, 2023.
  • 24. AutoStore. AutoStore system. Available from: https://www.autostoresystem.com/cases/zeek-logistics-fulfilling-the-same-day-delivery-promise. Accessed on December 5, 2023.
  • 25. Hu K-Y., Chang T-S. An innovative automated storage and retrieval system for B2C e-commerce logistics. International Journal of Advanced Manufacturing Technology 2010; 48(1-4): 297-305.
  • 26. Manzini R., Gamberi M., Regattieri A. Design and control of an AS/RS. International Journal of Advanced Manufacturing Technology 2006; 28(7-8): 766-774.
  • 27. Jardzioch A., Jaskowski J. Modeling of high storage sheet depot with plant simulation. Advances in Science and Technology Research Journal 2013; 7(17): 14-22.
  • 28. Chi C., Wu S., Xia D., Wu Y. Dynamic Picking and Storage Optimization of Robotic Picking Systems. Wireless Personal Communications 2023; 128(1): 1-23.
  • 29. Bao L., Dang T., Duy Anh N. Storage assignment policy and route planning of AGVS in warehouse optimization. In: Proc. of 2019 International Conference on System Science and Engineering 2019, 599-604.
  • 30. Li Z., Barenji A., Jiang J., Zhong R., Xu G. A mechanism for scheduling multi robot intelligent warehouse system face with dynamic demand. Journal of Intelligent Manufacturing 2020; 31(2): 469-480.
  • 31. Liu X., Cao J., Yang Y., Jiang S. CPS-based smart warehouse for industry 4.0: A survey of the underlying technologies. Computers. 2018; 7.
  • 32. Zhen L., Li H. A literature review of smart warehouse operations management. Frontiers of Engineering Management 2022; 9(1): 31-55.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8e589c13-d774-40bb-8476-a3ffefcb745a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.