PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Stereophotogrammetry for 2-D building deformation monitoring using Kalman Filter

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Stereo photogrammetry has been used in this study to analyse and detect movements within the Lecture theater of School of Environmental Technology of Federal University of Technology Minna via the use of Kalman filter algorithm. The essential steps for implementation of this method are herein highlighted and results obtained indicate Ins. Mov.s (velocity) ranging from ±0.0000001 m/epoch to±0.000007 m/epoch with greater movements noticed in the horizontal direction than in the vertical direction of the building. Because the observed movements were insignificant, the buildinghas been classified as stable. However, a longer period of observation with a bi-monthly observational interval has been recommended to enable decision on the rate of rise/sink and deformation of the building
Rocznik
Tom
Strony
1--7
Opis fizyczny
Bibliogr. 28 poz., rys., tab., wykr.
Twórcy
  • Department of Surveying and Geoinformatics, Federal University of Technology, Minna, Niger State, Nigeria
  • Department of Civil Engineering, University of Ilorin, Kwara State, Nigeria
autor
  • Department of Surveying and Geoinformatics, Enugu State University of Science and Technology, Enugu State, Nigeria
autor
  • Department of Surveying and Geoinformatics, Federal University of Technology, Minna, Niger State, Nigeria
  • Department of Surveying and Geoinformatics, Federal University of Technology, Minna, Niger State, Nigeria
Bibliografia
  • 1.Ajibade, S. (1997). Horizontal and Vertical controls for the study and monitoring of structure movement. In Annual General Meeting of Nigerian Institution of Surveyors, Uyo, Nigeria.
  • 2. Albert, J., Maas, H.-G., Schade, A., and Schwarz, W. (2002). Pilot studies on photogrammetric bridge deformation measurement. In Proceedings of the 2nd IAG Commission IV Symposium on Geodesy for Geotechnical and Structural Engineering, volume 21, page 24, 21–24 May, Berlin, Germany.
  • 3. Alemdar, Z. F., Browning, J., and Olafsen, J. (2011). Photogrammetric measurements of RC bridge column deformations. engineering structures, 33(8):2407–2415.
  • 4. Chounta, I. and Ioannidis, C. (2012). High accuracy deformation monitoring of a concrete beam using automatic photo-grammetric techniques. Proceedings of the FIG Working Week 2012–Knowing to manage the territory, protect the environment, evaluate the cultural heritage.
  • 5. Ehigiator-Irughe, R. and Ehigiator, M. (2013). Utilization of Kalman Filter Technique in Deformation Prediction of Above Surface Storage Tank. Advances in Physics theories and application, 21:18–23.
  • 6. Erol, S., Erol, B., and Ayan, T. (2004). A General Review of the Deformation Monitoring Techniques and A Case Study: Analyzing Deformations Using GPS/Levelling. In XXth ISPRS Congress, Technical Commission VII, volume XXXV Part B7, pages 622–627, 12–23 July 2004, Istanbul, Turkey.
  • 7. Fawzy, H. E.-D. (2015). The Efficiency of Close Range Photogrammetry Instead of Precise Terrestrial Surveying Technique for Deformation Monitoring in Unstable Buildings. International Journal of Civil Engineering and Technology (IJCIET), 6(10):176–186.
  • 8. Fechteler, P. and Eisert, P. (2009). Adaptive colour classification for structured light systems. IET Computer Vision, 3(2):49–59.
  • 9. Fraser, C. and Gruendic, L. (1985). The Analysis of Photogrammetric Deformation Measurements on Turtle Mountain. Photogrammetric Engineering and Remote Sensing, 51(2):207–216.
  • 10. Fryer, J., Mitchell, H., and Chandler, J. H. (2007). Applications of 3D Measurement from Images. Whittles Publishing.
  • 11. Gulal, E. (2013). Structural deformations analysis by means of Kalman-filtering. Boletim De Ciências Geodésicas, 19(1):98–113.
  • 12. Ince, C. D. and Sahin, M. (2000). Real-time deformation monitoring with GPS and Kalman Filter. Earth, planets and space, 52(10):837–840.
  • 13. Jung, I. K. (2004). Simultaneous localization and mapping in 3D environments with stereovision. PhD thesis, Institut National Polytechnique de Toulouse-INP, France.
  • 14. Lee, H. and Han, D. (2018). Deformation measurement of a railroad bridge using a photogrammetric board without control point survey. Journal of Sensors, 2018:1–10.
  • 15. Lee, S.-C., Hwang, E., and Han, J.-G. (2006). Efficient image retrieval based on minimal spatial relationships. Journal of information science and engineering, 22(2):447–459.
  • 16. Luhmann, T., Robson, S., Kyle, S., and Harley, I. (2007). Close Range Photogrammetry: Principles, Techniques and Applications. John Wiley & Sons, New York.
  • 17. Maas, H.-G. and Hampel, U. (2006). Photogrammetric techniques in civil engineering material testing and structure monitoring. Photogrammetric Engineering & Remote Sensing, 72(1):39–45.
  • 18. Mills, J. and Barber, D. (2004). Geomatics techniques for structural surveying. Journal of Surveying Engineering, 130(2):56–64.
  • 19. Mokroš, M., Liang, X., Surový, P., Valent, P., Čerňava, J., Chudý, F., Tunák, D., Saloň, Š., and Merganič, J. (2018). Evaluation of close-range photogrammetry image collection methods for estimating tree diameters. ISPRS International Journal of Geo-Information, 7(3).
  • 20. Mustafin, M., Valkov, V., and Kazantsev, A. (2017). Monitoring of Deformation Processes in Buildings and Structures in Metropolises. Procedia engineering, 189:729–736.
  • 21. Nwadialor, I. J. (2001). Monitoring of small displacements in large Engineering structures in Nigeria: A justified necessity. Journal of Science Technology, Mathematics Education, 4(4):19–27.
  • 22. Odumosu, J. and Ajayi, O. (2014). Comparative Analysis of some 2-D Transformation Models for Third Order Planimetric Mapping. International Journal of Advanced Scientific and Technical Research, 2(4):385–404.
  • 23. Olagunju, R., Aremu, S., and Ogundele, J. (2013). Incessant collapse of buildings in Nigeria: an architect's view. Civil and Environmental Research, 3(4):49–54.
  • 24. Rüther, H., Smit, J., and Kamamba, D. (2012). A comparison of close-range photogrammetry to terrestrial laser scanning for heritage documentation. South African Journal of Geomatics, 1(2):149–162.
  • 25. US Army Corps of Engineers (2002). Structural Deformation Surveying (EM-1110-2-1009). Washington, DC, USA.
  • 26. Wan, A. A. (2002). The Deformation Study of High Rise Building Using Repeated GPS Measurements. Research Report for Ministry of Science & Technology Malaysia.
  • 27. Wan Aziz, W., Zulkarnaini, M., and Shu, K. (2005). The deformation study of high building using RTK-GPS: A first experience in Malaysia. In FIG Working Week 2005 and GSDI-8, ‘From Pharaohs to Geoinformatics FIG Working Week’, 16–21 April 2005, Cairo, Egypt.
  • 28. Wang, C.-H., Mills, J. P., Gosling, P. D., Bridgens, B., and Grisdale, R. J. (2010). Monitoring the testing, construction and as-built condition of membrane structures by close range photogrammetry. In Proceedings of the ISPRS Commission V Mid-Term Symposium ‘Close Range Image Measurement Techniques’, volume XXXVIII, pages 592–596, 21–24 June 2010, Newcastle upon Tyne, Unted Kingdom.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8e55b12f-0cd5-466c-b45f-c23f79a27d6d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.