PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Research on the Characterization of Ti Inclusions and Their Precipitation Behavior in Tire Cord Steel

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the present investigation, the morphology of Ti inclusions in high strength tire cord steel was investigated and their precipitation behavior was discussed using a precipitation and growth model. The results show that Ti inclusions mainly exist in the form of TiN. The two-dimensional characterization of Ti inclusions is square-like with sharp edges and corners, while its three-dimensional shape exhibits a cubic or rectangular-prism morphology. The Ti inclusions do not precipitate when the solid fraction of tire cord during solidification is less than 0.987, and their final radius is closely related to the cooling rate and initial concentration product. The higher the cooling speed, the smaller the final radius, when the cooling speed is constant, the final radius of Ti inclusions is mainly determined by the initial concentration product, w[N]0×w[Ti]0. In order to retard the precipitation and growth of Ti inclusions in tire cord steel, the cooling rate and initial concentration product can be taken into consideration.
Rocznik
Tom
Strony
33--37
Opis fizyczny
Bibliogr. 22 poz., rys., tab., wykr.
Twórcy
autor
  • Hubei Polytechnic University 16 Guilin N Rd, Xialu Qu, Huangshi Shi, Hubei Sheng, Chiny
autor
  • Hubei Polytechnic University 16 Guilin N Rd, Xialu Qu, Huangshi Shi, Hubei Sheng, Chiny
autor
  • Hubei Polytechnic University 16 Guilin N Rd, Xialu Qu, Huangshi Shi, Hubei Sheng, Chiny
autor
  • Hubei Polytechnic University 16 Guilin N Rd, Xialu Qu, Huangshi Shi, Hubei Sheng, Chiny
Bibliografia
  • [1] Parusov, V., Derevyanchenko, I., Sychkov, A., Nesterenko, A., Parusov, É. & Zhigarev, M. (2005). Ensuring high quality indices for the wire rod used to make metal cord. Metallurgist. 49(11-12), 439-448.
  • [2] Lee, S.K. , Ko, D.C. & Kim, B.M. (2009). Pass schedule of wire drawing process to prevent delamination for high strength steel cord wire. Materials & Design. 30(8), 2919-2927.
  • [3] Linaza, M.A., Romero, J.L., Rodriguezibabe, J.M., Urcola, J.J. & Ceit, S.S. (1995). Cleavage fracture of microalloyed forging steels. Scripta Metallurgica Et Materialia. 32(3), 395-400.
  • [4] Yan, W., Shan, Y.Y. & Yang, K. (2006). Effect of tin inclusions on the impact toughness of low-carbon microalloyed steels. Metallurgical and Materials Transactions A (Physical Metallurgy and, Materials Science). 37(7), 2147-2158.
  • [5] Cui, H.Z. & Chen, W.Q. (2012). Effect of boron on morphology of inclusions in tire cord steel. Journal of Iron and Steel Research, International. 19(4), 22-27.
  • [6] Li, J.Y. & Zhang, W.Y. (1989). Effect of TiN inclusion on fracture toughness in ultrahigh strength steel. Isij International. 29(2), 158-164.
  • [7] Petit, J. & Sarrazin-Baudoux, C. (2015). Fatigue crack propagation in thin wires of ultra-high strength steel. Key Engineering Materials. 627(1), 153-156.
  • [8] Liu, H.Y., Wang, H.L., Li, L., Zheng, J.Q., Li, Y.H. & Zeng, X.Y. (2011). Investigation of Ti inclusions in wire cord steel. Ironmaking & Steelmaking. 38(1), 53-58.
  • [9] Chen, J.X. (2010). Common Charts and Databook for Steelmaking. (2nd ed.). Beijing: Metallurgical Industry Press.
  • [10] Wada, H. & Pehlke, R.D. (1985). Nitrogen solubility and nitride formation in austenitic Fe-Ti alloys. Metallurgical Transactions B (Process Metallurgy). 16(4), 815-822.
  • [11] Darken, L.S. (1967). Thermodynamics of binary metallic solutions. Trans. Metall. Soc. AIME. 239, 80-89.
  • [12] Yoshikawa, T. & Morita, K. (2007). Influence of alloying elements on the thermodynamic properties of titanium in molten steel. Metallurgical & Materials Transactions B. 38(4), 671-680.
  • [13] Kim, W.Y., Jo, J.O., Chung, T.I., Kim, D. S. & Pak, J.J. (2007). Thermodynamics of titanium , nitrogen and TiN formation in liquid iron. Isij International. 47(8), 1082-1089.
  • [14] Akamatsu, S., Hasebe, M., Senuma, T., Matsumura, Y. & Kisue, O. (1994). Thermodynamic calculation of solute carbon and nitrogen in Nb and Ti added extra-low carbon steels. Isij International. 34(1), 9-16.
  • [15] Ohnaka, I. (1986). Mathematical analysis of solute redistribution during solidification with diffusion in solid phase. Transactions of the Iron and Steel Institute of Japan, 26(12), 1045-1051.
  • [16] Matsuno, J. (1976). Solidification phenomena, solidification comm. Proc. Symp. ISIJ, Tokyo.
  • [17] Won, Y.M. & Thomas, B.G. (2001). Simple model of microsegregation during solidification of steels. Metallurgical and Materials Transactions A (Physical Metallurgy and, Materials Science). 32(7), 1755-1767.
  • [18] Maugis, P. , & Mohamed Gouné. (2005). Kinetics of vanadium carbonitride precipitation in steel: a computer model. Acta Materialia. 53(12), 3359-3367.
  • [19] Manohar, P. A. , Dunne, D. P. , Chandra, T. , & Killmore, C. R. . (1996). Grain growth predictions in microalloyed steels. Isij International. 36(2), 194-200.
  • [20] Cai, X.F., Bao, Y.P., Wang, M., Lin, L., Dai, N. C. & Gu, C. (2015). Investigation of precipitation and growth behavior of Ti inclusions in tire cord steel. Metallurgical Research & Technology. 112(4), 407-417.
  • [21] Goto, H., Miyazawa, K., Yamada, W. & Tanaka, K. (1994). Effect of cooling speed on composition of oxides precipitated during solidification of steels. Isij International. 80(2), 113-118.
  • [22] Kunze, J., Micke, C., Backmann, G., Beyer, B., Reibold, M. & Klinkenberg, C. (1997). Precipitation of titanium nitride in low-alloyed steel during cooling and deformation. Steel Research. 68(10), 441-449.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8e53fb60-c343-4384-a9f2-b9188ca67e17
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.