PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Research on one-dimensional ubiquitiformal constitutive relations for a bimaterial bar

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A one-dimensional ubiquitiformal constitutive model for a bimaterial bar is proposed in this paper. An explicit analytical expression for the effective Young modulus is then obtained, which, unlike the fractal one, leads to a continuous displacement distribution along the bar. Moreover, numerical results for concretes are calculated and found to be in agreement with previous experimental data. In addition, some previous empirical and semi-empirical constitutive models are also examined, which shows that each of these models can correspond well to a ubiquitiformal one under a certain complexity.
Rocznik
Strony
291--301
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
autor
  • State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing, China
  • State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing, China
  • State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing, China
  • State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing, China
Bibliografia
  • 1. Bazant Z.P., Yavari A., 2005, Is the cause of size effect on structural strength fractal or energetic- -statistical? Engineering Fracture Mechanics, 72, 1-31
  • 2. Carpinteri A., Chiaia B., Cornetti P., 2003, On the mechanics of quasi-brittle materials with a fractal microstructure, Engineering Fracture Mechanics, 70, 2321-2349
  • 3. Carpinteri A., Cornetti P., 2002, A fractional calculus approach to the description of stress and strain localization in fractal media, Chaos, Solitons and Fractals, 13, 85-94
  • 4. Counto U.J., 1964, The effect of the elastic modulus of the aggregate on the elastic modulus, creep and creep recovery of concrete, Magazine of Concrete Research, 16, 129-138
  • 5. Davey K., Alonso Rasgado M.T., 2011, Analytical solutions for vibrating fractal composite rods and beams, Applied Mathematical Modelling, 35, 1194-1209
  • 6. Hashin Z., 1962, The elastic moduli of heterogeneous materials, Journal of Applied Mechanics, 29, 1, 143-150
  • 7. Hafner S., Eckardt S., Luther T., 2006, Mesoscale modeling of concrete: Geometry and numerics, Computers and Structures, 84, 450-461
  • 8. Hirsch T.J., 1962, Modulus of elasticity of concrete affected by elastic moduli of cement paste matrix and aggregate, Journal of the American Concrete Institute, 59, 427-452
  • 9. Li C.Q., Zheng J.J., Zhou X.Z., McCarthy M.J., 2003, A numerical method for the prediction of elastic modulus of concrete, Magazine of Concrete Research, 55, 6, 497-506
  • 10. Li G.Y., Ou Z.C., Xie R., Duan Z.P., Huang F.L., 2016, A ubiquitiformal one-dimensional steady-state conduction model for a cellular material rod, International Journal of Thermophysics, 37, 47, 1-13
  • 11. Li J.Y., Ou Z.C., Tong Y., Duan Z.P., Huang F.L., 2017, A statistical model for ubiquitiformal crack extension in quasi-brittle materials, Acta Mechanica, 228, 2725-2732
  • 12. Mandelbrot B.B., 1967, How long is the coast of Britain? Statistical self-similarity and fractional dimension, Science, 156, 636-638
  • 13. Mandelbrot B.B., 1977, Fractals: Form, Chance, and Dimension, Freeman, San Francisco
  • 14. Mandelbrot B.B., 1982, The Fractal Geometry of Nature, Freeman, New York
  • 15. Mandelbrot B.B., Passoja D.E., Paullay A.J., 1984, Fractal character of fracture surfaces of metals, Nature, 308, 721-722
  • 16. Ou Z.C., Li G.Y., Duan Z.P., Huang F.L., 2014, Ubiquitiform in applied mechanics, Journal of Theoretical and Applied Mechanics, 52, 1, 37-46
  • 17. Ou Z.C., Li G.Y., Duan Z.P., Huang F.L., 2019, A stereological ubiquitiformal softening model for concrete, Journal of Theoretical and Applied Mechanics, 57, 1, 27-35
  • 18. Ou Z.C., Yang M., Li G.Y., Duan Z.P., Huang F.L., 2017, Ubiquitiformal fracture energy, Journal of Theoretical and Applied Mechanics, 55, 3, 1101-1108
  • 19. Road Research Laboratory, 1950, Design of Concrete Mixes, 2nd ed. London, H.M. Stationery Office, pp. 16, Road Note No. 4
  • 20. Stock A.F., Hannantt D.J., Williams R.I.T., 1979, The effect of aggregate concentration upon the strength and modulus of elasticity of concrete, Magazine of Concrete Research, 31, 109, 225-234
  • 21. Vilardell J., Aguado A., Agullo L., Gettu R., 1998, Estimation of the modulus of elasticity for dam concrete, Cement and Concrete Research, 28, 1, 93-101
  • 22. Zheng J.J., Li C.Q., Zhou X.Z., 2006, An analytical method for prediction of the elastic modulus of concrete, Magazine of Concrete Research, 58, 10, 6
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8e4e544b-d18a-4642-80ec-d8ab96f6b1ee
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.