PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A ship manoeuvring desktop simulator for developing and validating automatic control algorithms

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents a user‐friendly simulator developed based on Windows Forms and deployed as a test bed for validating automatic control algorithms. The effectiveness of some of the integrated track controllers has been tested with free running experiments carried out in the Towing Tank for Manoeuvres in Shallow Water in Ostend, Belgium. The controllers enable a ship to follow predefined random paths with high accuracy. Ship‐to‐ship interaction is considered in some cases. Simulator environments provide useful tools for extending the number of validation scenarios, supplementing the work performed in the towing tank. The simulator is presented with a graphical user interface, aiming at providing a good user experience, numerous test scenarios and an extensively‐validated library of automatic control algorithms. With the usage of the simulator, further evaluation of developed control algorithms by implementing extensive test runs with different ships and waterways could be made. Case studies are shown to illustrate the functionality of the simulator.
Twórcy
autor
  • Ghent University, Ghent, Belgium
autor
  • Ghent University, Ghent, Belgium
  • Flanders Hydraulics Research, Antwerp, Belgium
Bibliografia
  • [1] O. F. Sukas, O. K. Kinaci, and S. Bal, “Theoretical background and application of MANSIM for ship maneuvering simulations,” Ocean Eng., vol. 192, Nov. 2019.
  • [2] T. I. Fossen, Handbook of marine craft hydrodynamics and motion control. Wiley, 2011.
  • [3] M. Vantorre, K. Eloot, G. Delefortrie, E. Lataire, M. Candries, and J. Verwilligen, “Maneuvering in shallow and confined water,” in Encyclopedia of Maritime and Offshore Engineering, John Wiley & Sons, Ltd, 2017, pp. 1–17.
  • [4] OpenSeaMap, “Western Scheldt,” 2023. [Online]. Available: https://map.openseamap.org/. [Accessed: 06‐Mar‐2023].
  • [5] J. D. L. Rodriguez, “GMap.NET.Windows.” [Online]. Available: https://github.com/judero01col/GMap.NET. [Accessed: 22‐Feb‐2023].
  • [6] Google Maps, “Zhenjiang section of Yangtze River,” 2023.
  • [7] Google Maps, “Nanjing section of Yangtze River,” 2023. [Online]. Available: https://www.google.be/maps/place/Nanjing,+Jiangsu,+China. [Accessed: 06‐Mar‐2023].
  • [8] Code Art Engineering, “WinForm Gauge,” 2022.[Online]. https://winformgauge.codearteng.com/. [Accessed: 06‐Mar‐2023].
  • [9] Wikipedia, “Mercator projection.” [Online]. Available:https://en.wikipedia.org/wiki/Mercator_projection.[Accessed: 22‐Feb‐2023].
  • [10] F. Frenet, “Sur les courbes à double courbure.,” J. Math.Pures Appl., pp. 437–447, 1852.
  • [11] T. I. Fossen, “Lineof‐sight path‐following control utilizing an extended Kalman filter for estimation of speed and course over ground from GNSS positions,” J. Mar. Sci. Technol., vol. 27, no. 1, pp. 806–813, 2022.
  • [12] M. Abdelaal, M. Fränzle, and A. Hahn, “Nonlinear model predictive control for trajectory tracking and collision avoidance of underactuated vessels with disturbances,” Ocean Eng., vol. 160, pp. 168–180, Jul. 2018.
  • [13] W. Raman‐Nair and R. Gash, “Least squares identification of linear sway‐yaw manoeuvring coefficients and drag‐area parameters of ships,” Proc. Inst. Mech. Eng. Part M J. Eng. Marit. Environ., vol. 235, no. 3, pp. 809–815, 2021.
  • [14] M. A. Abkowitz, “Measurement of hydrodynamic characteristics from ship maneuvering trials by system identification,” 1980.
  • [15] X. G. Zhang and Z. J. Zou, “Identification of Abkowitz model for ship manoeuvring motion using ε‐support vector regression,” J. Hydrodyn., vol. 23, no. 3, pp. 353– 360, Jun. 2011. [16] M. A. Abkowitz, “Lectures on ship hydrodynamics‐‐steering and manoeuvrability,” 1964.
  • [17] N. H. Norrbin, “Theory and observation on the use of a mathematical model for ship maneuvering in deep and confined waters,” Proc. 8th Symp. Nav. Hydrodyn., vol. 2, no. August 1970, pp. 807–904, 1970.
  • [18] H. Yasukawa and Y. Yoshimura, “Introduction of MMG standard method for ship maneuvering predictions,” J. Mar. Sci. Technol., vol. 20, no. 1, pp. 37–52, 2015.
  • [19] M. Chislett and J. Strom‐Tejsen, “Planar motionmechanism tests and full scale steering and full scale steering maneuvering predictions for a mariner class vessel,” 1965.
  • [20] Fossen T, Guidance and control of ocean vehicles. 1994.
  • [21] T. Cimen, “Development and validation of a mathematical model for control of constrained nonlinear oil tanker motion,” Math. Comput. Model. Dyn.Syst., vol. 15, no. 1, pp. 17–49, Feb. 2009.
  • [22] K.‐H. Son and K. Nomoto, “On the coupled motion of steering and rolling of a ship in following seas,” J. Soc. Nav. Archit. Japan, Jan. 1982.
  • [23] “SIMMAN2020,” 2020. [Online]. Available: https://simman2020.kr/contents/Ship_data_summary.ph p. [Accessed: 06‐Mar‐2023].
  • [24] OpenSeaMap, “Nanjing section of Yangtze River,” 2023. [Online]. Available: https://map.openseamap.org/. [Accessed: 06‐Mar‐2023].
  • [25] IMO, “COLREGs,” 1972. [Online]. Available:https://www.imo.org/en/About/Conventions/Pages/COL REG.aspx. [Accessed: 06‐Mar‐2023].
  • [26] OpenSeaMap, “Norderelbe,” 2023. [Online]. Available: https://map.openseamap.org/. [Accessed: 06‐Mar‐2023].
  • [27] OpenSeaMap, “Nieuwe Maas,” 2023. [Online]. Available: https://map.openseamap.org/. [Accessed: 06‐ Mar‐2023].
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8e4cdc94-86d8-4f58-9748-ce7ff45f46d1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.