PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Tectonics of the Wysoka Kamieńska Graben (NW Poland) and implications for fault sealing potential

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Reservoir confinement by faults is important for safe storage of liquid waste or hydrocarbons. Having access to 3D seismic and borehole data, we have interpreted the tectonic setting of the Wysoka Kamieńska Graben (WKG) in the NW part of the Polish Basin and subsequently made an interpretation of the sealing potential of the graben-bounding faults. The formation and development of the graben in the Late Triassic and Early Jurassic was controlled by mechanical decoupling in the salts of the Zechstein Group. The primary tectonic factor triggering the graben origin was dextral strike-slip movement along the regional fault zone in the Paleozoic basement, transtensional accommodation of which in the Zechstein-Mesozoic cover led to development of a horse-tail pattern of grabens. During the Late Cretaceous, the graben underwent minor tectonic inversion. Sealing potential analysis of the graben-bounding faults was performed for the Triassic-Jurassic sequence including juxtaposition seal and fault gouge seal components. Finally, we have focussed our interpretation on the Jurassic sequence where the best reservoirs have been recognized. Our results indicate good to moderate sealing potential of the Hettangian reservoir, poor to moderate sealing of the Pliensbachian reservoir and lack of sealing of the Bajocian reservoir. Hence, the Hettangian reservoir, characterized by large thickness, low clay content and a large regional extent, acts as a potential storage formation, being confined by the graben-bounding faults of the WKG.
Rocznik
Strony
art. no. 38
Opis fizyczny
Bibliogr. 92 poz., rys., tab., wykr.
Twórcy
autor
  • Polish Geological Institute – National Research Institute, Rakowiecka 4, 00-975 Warszawa, Poland
  • Polish Geological Institute – National Research Institute, Rakowiecka 4, 00-975 Warszawa, Poland
  • Polish Geological Institute – National Research Institute, Rakowiecka 4, 00-975 Warszawa, Poland
Bibliografia
  • 1. Allan, U.S., 1989. Model for hydrocarbon migration and entrapment within faulted structures. AAPG Bulletin, 73: 803-811.
  • 2. Asquith, G., Krygowski, D., 2004. Basic relationships of well log interpretation. AAPG Methods in Exploration, 16: 1-20.
  • 3. Aydin, A., 2000. Fractures, faults, and hydrocarbon entrapment, migration and flow. Marine and Petroleum Geology, 17: 797-814.
  • 4. Barton, C.A., Zoback, M.D., Moos, D., 1995. Fluid flow along potentially active faults in crystalline rock. Geology, 23: 683-686.
  • 5. Bojarski, L., Pazdro, J., Sobol, K., 1977. Anomalous reservoir pressures in the Polish Lowlands (in Polish with English summary). Przegląd Geologiczny, 25: 312-316.
  • 6. Bouvier, J.D., Kaars-Sijpesteijn, C.H., Kluesner, D.F., Onyejekwe, C., Van Der Pal, R.C., 1989. Three-dimensional seismic interpretation and fault sealing investigations, Nun River Field, Nigeria. AAPG Bulletin, 73: 1397-1414.
  • 7. Bredehoeft, J.D., Belitz, K., Sharp-Hansen, S., 1992. The hydrodynamics of the Big Horn Basin: a study of the role of faults. AAPG Bulletin, 76: 530-546.
  • 8. Bretan, P., 2017. Trap Analysis: an automated approach for deriving column height predictions in fault-bounded traps. Petroleum Geoscience, 23: 56-69.
  • 9. Bretan, P., Yielding, G., Jones, H., 2003. Using calibrated shale gouge ratio to estimate hydrocarbon column heights. AAPG Bulletin, 87: 397-413.
  • 10. Caumon, G., Collon-Drouaillet, P., Le Carlier de Veslud, C., Viseur, S., Sausse, J., 2009. Surface-based 3D modeling of geological structures. Mathematical Geosciences, 4: 927-945.
  • 11. Celia, M.A., Bachu, S., Nordbotten, J.M., Bandilla, K.W., 2015. Status of CO2 storage in deep saline aquifers with emphasis on modeling approaches and practical simulations. Water Resources Research, 51: 6846-6892.
  • 12. Chen S., Xu S., Wang, D., Tan, Y., 2013. Effect of block rotation on fault sealing: An example in Dongpu sag, Bohai Bay basin, China. Marine and Petroleum Geology, 39: 39-47.
  • 13. Childs, C., Manzocchi, T., Walsh, J.J., Bonson, C.G., Nicol, A., Schöpfer, M.P.J., 2009. A geometric model of fault zone and fault rock thickness variations. Journal of Structural Geology, 31: 117-127.
  • 14. Clavier, C., Hoyle, W., Meunier, D., 1971. Quantitative interpretation of thermal neutron decay time logs: Part I. Fundamentals and techniques. Journal of Petroleum Technology, 23: 743-755.
  • 15. Corona, F.V., Davis, J.S., Hippler, S.J., Vrolijk, P.J., 2010. Multi-fault analysis scorecard: testing the stochastic approach in fault seal prediction. Geological Society Special Publications, 347: 317-332.
  • 16. Dadlez, R., 1989. Epicontinental Permian and Mesozoic basins in Poland (in Polish with English summary). Kwartalnik Geologiczny, 33 (2): 175-198.
  • 17. Dadlez, R., 1990. Tectonics of the Southern Baltic (in Polish with English summary). Kwartalnik Geologiczny, 34 (1): 1-20.
  • 18. Dadlez, R., Jóźwiak, W., Młynarski, S., 1997. Subsidence and inversion in the western part of Polish Basin - data from seismic velocities. Geological Quarterly, 41 (2): 197-208.
  • 19. Dadlez, R., Marek, S., 1997. Development of the Permian and Mesozoic basins (in Polish with English summary). Prace Państwowego Instytutu Geologicznego, 153: 403-409.
  • 20. Dadlez, R., Marek, S., Pokorski, J., 2000. Geological Map of Poland Without Cenozoic Deposits. Państwowy Instytut Geologiczny, Warszawa.
  • 21. Delprat-Jannaud, F., Korre, A., Shi, J.Q., McConnell, B., Arvanitis, A., Boavida, D., Car, M., Gastine, M., Grunnaleite, I., Bateman, K., Poulsen, N., Sinayuc, C., Vähäkuopus, T., Verceli, S., Wójcicki, A., 2013. State-of-the-art of review CO2 Storage Site Selection and Characterisation Methods. CGS Europe report No. D3.3 (eds. A. Korre, B. McConnell and F. Delprat-Jannaud), September 2013.
  • 22. Doornenbal, H., Stevenson, A., (eds.), 2010. Petroleum Geological Atlas of the Southern Permian Basin Area. EAGE Publications, Houten.
  • 23. Downey, M.W., 1984. Evaluating seals for hydrocarbon accumulations. AAPG Bulletin, 68: 1752-1763.
  • 24. Feldman-Olszewska, A., 1997. Depositional architecture of the Polish epicontinental Middle Jurassic basin. Geological Quarterly 41 (4): 491-508.
  • 25. Feldman-Olszewska, A., Adamczak, T., Szewczyk, J., 2010. Geological characterization of the reservoir and seal levels in the Zaosie and Jeżów structures as a candidate site for CO2 storage on the basis of the data from deep boreholes (in Polish with English summary). Biuletyn Państwowego Instytutu Geologicznego, 439: 17-28.
  • 26. Feldman-Olszewska, A., Adamczak-Biały, T., Becker, A., 2012. Characterization of the Jurassic and Triassic reservoirs and seals from north Mazovia as a candidate site for CO2-storage based on data from deep boreholes (in Polish with English summary). Biuletyn Państwowego Instytutu Geologicznego, 448: 27-46.
  • 27. Fisher, Q.J., Knipe, R.J., 1998. Fault sealing processes in siliciclastic sediments. Geological Society Special Publications, 147: 117-134.
  • 28. Fort, X., Brun, J.-P., Chauvel, F., 2004. Salt tectonics on the Angolan margin, synsedimentary deformation processes. AAPG Bulletin, 88: 1523-1544.
  • 29. Foxford, K.A., Walsh, J.J., Watterson, J., Garden, I.R., Giscott, S.C., Burley, S.D., 1998. Structure and content of the Moab Fault Zone, Utah, USA, and its implications for fault seal prediction. Geological Society Special Publications, 147: 87-103.
  • 30. Fristad, T., Groth, A., Yielding, G., Freeman, B., 1997. Quantitative fault seal prediction: a case study from Oseberg Syd. Norwegian Petroleum Society Special Publications, 7: 107-124.
  • 31. Fulljames, J.R., Zijerveld, L.J.J., Franssen, R.C.M.W., 1997. Fault seal processes: systematic analysis of fault seals over geological and production time scales. Norwegian Petroleum Society Special Publications, 7: 51-61.
  • 32. Gajewska, I., 1988. Palaeothickness and lithofacies of the Muschelkalk and lower Keuper and the middle Triassic palaeotectonics in Polish Lowland (in Polish with English summary). Kwartalnik Geologiczny, 32 (1): 73-82.
  • 33. Gibson, R., 1994. Fault-zone seals in siliciclastic strata of the Columbus Basin, offshore Trinidad. AAPG Bulletin, 78: 1372-1385.
  • 34. Grunau, H.R., 1987. A worldwide look at the cap-rock problem. Journal of Petroleum Geology, 10: 245-265.
  • 35. Hesthammer, J., Fossen, H., 2000. Uncertainties associated with fault sealing analysis. Petroleum Geoscience, 6: 37-45.
  • 36. Hurst, A., 1987. Mineralogical analysis and the evaluation of the petrophysical parameter Vshale for reservoir description. Marine and Petroleum Geology, 4: 82-91.
  • 37. Jackson, M., Hudec, M., 2017. Salt Tectonics: Principles and Practice. Cambridge.
  • 38. Jarosiński, M., Beekman, F., Bada, G., Cloetingh, S., 2006. Redistribution of recent collision push and ridge push in Central Europe: insights from FEM modelling. Geophysical Journal International, 167: 860-880.
  • 39. Jolley, S.J., Fisher, Q.J., Ainsworth, R.B., 2010. Reservoir compartmentalization: an introduction. Geological Society Special Publications, 347: 1-8.
  • 40. Kemper, M., Gunning, J., 2014. Joint Impedance and Facies Inversion-Seismic inversion redefined. First Break, 32: 89-95.
  • 41. Kim, Y.-S., Peacock, D.C.P., Sanderson, D.J., 2004. Fault damage zones. Journal of Structural Geology, 26: 503-517.
  • 42. Kim, Y.-S., Sanderson, D.J., 2006. Structural similarity and variety at the tips in a wide range of strike-slip faults: a review. Terra Nova, 18: 330-344.
  • 43. Knai, T.A., Knipe, R.J., 1998. The impact of faults on fluid flow in the Heidrun Field. Geological Society Special Publications, 147: 269-282.
  • 44. Knipe, R.J., 1997. Juxtaposition and seal diagrams to help analyze fault seals in hydrocarbon reservoirs. AAPG Bulletin, 81: 187-195.
  • 45. Knipe, R.J., 1993. The influence of fault zone processes and diagenesis on fluid flow. AAPG Studies in Geology, 36: 135-151.
  • 46. Knipe, R.J., 1992. Faulting processes and fault seal. Norwegian Petroleum Society Special Publications, 1: 325-342.
  • 47. Knipe, R.J., Fisher, Q.J., Jones, G., Clennell, M.R., Farmer, A.B., Harrison, A., Kidd, B., Mcallister, E., Porter, J.R., White, E.A., 1997. Fault seal analysis: successful methodologies, application and future directions. Norwegian Petroleum Society Special Publications, 7: 15-38.
  • 48. Knott, S.D., 1993. Fault seal analysis in the North Sea. AAPG Bulletin, 77: 778-792.
  • 49. Kopik, J., 1997. Jura środkowa: formalne i nieformalne jednostki litostratygraficzne (in Polish). Prace Państwowego Instytutu Geologicznego, 153: 263-264.
  • 50. Kopik, J., 1998. Lower and Middle Jurassic of the north-eastern margin of the Upper Silesian Coal Basin (in Polish with English summary). Biuletyn Państwowego Instytutu Geologicznego, 378: 67-129.
  • 51. Krzywiec, P., 2006a. Triassic-Jurassic evolution of the Pomeranian segment of the Mid-Polish Trough-basement tectonics and subsidence patterns. Geological Quarterly, 50 (1): 139-150.
  • 52. Krzywiec, P., 2006b. Structural inversion of the Pomeranian and Kuiavian segments of the Mid-Polish Trough - lateral variations in timing and structural style. Geological Quarterly, 50 (1): 151-168.
  • 53. Kwolek, K., 2000. The age of tectonic movements in the Poznań-Kalisz dislocation zone, Fore-Sudetic Monocline (in Polish with English summary). Przegląd Geologiczny, 48: 804-814.
  • 54. Labaume, P., Moretti, I., 2001. Diagenesis-dependence of cataclastic thrust fault zone sealing in sandstones. Example from the Bolivian Sub-Andean Zone. Journal of Structural Geology, 23: 1659-1675.
  • 55. Lindsay, N.G., Murphy, F.C., Walsh, J.J., Watterson, J., 1993. Outcrop studies of shale smears on fault surfaces. IAS Special Publication, 15: 113-123.
  • 56. Manzocchi, T., Heath, A.E., Palananthakumar, B., Childs, C., Walsh, J.J., 2008. Faults in conventional flow simulation models: a consideration of representational assumptions and geological uncertainties. Petroleum Geoscience, 14: 91-110.
  • 57. Mauduit, T., Brun, J.P., 1998. Growth fault/rollover systems: Birth, growth, and decay. Journal of Geophysical Research, 103 (B8): 18119-18136.
  • 58. McClay, K.R., Waltham D.A., Scott, A.D., Abousetta, A.A., 1991. Physical and seismic modelling of listric normal fault geometries. Geological Society Special Publications, 56: 231-239.
  • 59. Mildren, S.D., Hillis, R.R., Kaldi, J., 2002. Calibrating predictions of fault seal reactivation in the Timor sea. The APPEA Journal, 42: 187-202.
  • 60. Moretti, I., 1998. The role of faults in hydrocarbon migration. Petroleum Geoscience, 4: 81-94.
  • 61. Murray, T.A., Power, W.L., Johnson, A.J., Christie, G.J., Richards, D.R., 2019. Validation and analysis procedures for juxtaposition and membrane fault seals in oil and gas exploration. Geological Society Special Publications, 496: 145-161.
  • 62. Needham, D.T., Yielding, G., Freeman, B., 1996. Analysis of fault geometry and displacement patterns. Geological Society Special Publications, 99: 189-199.
  • 63. Pandey, V., Nekrasova, T., Tsybulkina, I., Clemons, K., Li, D., Six, B., 2020. Prediction of 3-D Facies and Petrophysical Models using Seismic Inversion and Advanced Statistical Data Analytics in Midland Basin Study Area. SPE/AAPG/SEG Unconventional Resources Technology Conference, Virtual, July 2020. Paper Number: URTEC-2020-2442-MS.
  • 64. Pei, Y., Paton, D.A., Knipe, R.J., Wu, K., 2015. A review of fault sealing behaviour and its evaluation in siliciclastic rocks. Earth-Science Reviews, 150: 121-138.
  • 65. Pieńkowski, G., 2004. The epicontinental Lower Jurassic of Poland. Polish Geological Institute Special Papers, 12: 5-154.
  • 66. Pożaryski, W., Dadlez, R., 1987. Tectonics (in Polish with English summary). Prace Państwowego Instytutu Geologicznego, 119: 175-194.
  • 67. Serra, O., 1984. Fundamentals of Well-log Interpretation. Elsevier, Amsterdam.
  • 68. Shipton, Z.K., Evans, J.P., Thompson, L.B., 2005. The geometry and thickness of deformation-band fault core and its influence on sealing characteristics of deformation-band fault zones. AAPG Memoir, 85:181-195.
  • 69. Smith, D.A., 1966. Theoretical considerations of sealing and non-sealing faults. AAPG Bulletin, 50: 363-374.
  • 70. Sowiżdżał, A., Semyrka, R., 2016. Analyses of permeability and porosity of sedimentary rocks in terms of unconventional geothermal resource explorations in Poland. Geologos, 22: 149-163.
  • 71. Stieber, S.J., 1970. Pulsed Neutron Capture Log Evaluation - Louisiana Gulf Coast. Society of Petroleum Engineers, SPE 2961.
  • 72. Stephenson, R.A., Narkiewicz, M., Dadlez, R., van Wees, J.D., Andriessen, P., 2003. Tectonic subsidence modelling of the Polish Basin in the light of new data on crustal structure and magnitude of inversion. Sedimentary Geology, 156: 59-70.
  • 73. Szewczyk, J., 2000. Statistical-stratigraphic standardization of natural gamma radiation well logs (in Polish with English summary). Biuletyn Państwowego Instytutu Geologicznego, 392: 121-152.
  • 74. T7 SEAL modules. In: http://www.badleys.co.uk/T7-SEAL.php.
  • 75. Torabi, A., Ellingsen, T.S.S., Johannessen, M.U., Alaei, B., Rotevatn, A., Chiarella, D., 2020. Fault zone architecture and its scaling laws: where does the damage zone start and stop? Geological Society Special Publications, 496: 99-124.
  • 76. Torabi, A., Johannessen, M.U., Ellingsen, T.S.S., 2019. Fault core thickness: insights from siliciclastic and carbonate rocks. Geofluids, 2019: 1-24.
  • 77. Vrolijk, P.J., Urai, J.L., Kettermann, M., 2016. Clay smear: review of mechanisms and applications. Journal of Structural Geology, 86: 95-152.
  • 78. Wagner, R., Peryt, T.M., 1997. Possibility of sequence stratigraphic subdivision of the Zechstein in the Polish Basin. Geological Quarterly, 41 (4): 457-474.
  • 79. Walderhaug, O., 1996. Kinetic modeling of quartz cementation and porosity loss in deeply buried sandstone reservoirs. AAPG Bulletin, 80: 731-745.
  • 80. Walsh, J.J., Watterson, J., 1988. Analysis of the relationship between displacements and dimensions of faults. Journal of Structural Geology, 10: 239-247.
  • 81. Wang, M., Huang, K., Xie, W., Dai, X., 2019. Current research into the use of supercritical CO2 technology in shale gas exploitation. International Journal of Mining Science and Technology, 29: 739-744.
  • 82. Watterson, J., 1986. Fault dimensions, displacements and growth. Pure and Applied Geophysics 124: 365-373.
  • 83. Watts, N.L., 1987. Theoretical aspects of cap-rock and fault seals for single- and two-phase hydrocarbon columns. Marine and Petroleum Geology, 4: 274-307.
  • 84. Weber, K.J., 1997. A historical overview of the efforts to predict and quantify hydrocarbon trapping features in the exploration phase and in field development planning. Norwegian Petroleum Society Special Publications, 7: 1-13.
  • 85. Wójcicki, A., Jarosiński, M., Roman, M., 2021. The estimation of CO2 storage potential of a gas-bearing shale succession at the early stage of reservoir characterization: a case study from the Baltic Basin (Poland). Geological Quarterly, 65 (1): 3.
  • 86. Yielding, G., Bretan, P., Freeman, B., 2010. Fault seal calibration: a brief review. Geological Society Special Publications, 347: 243-255.
  • 87. Yielding, G., Freeman, B., Needham, D.T., 1997. Quantitative fault seal prediction. AAPG Bulletin, 81: 897-917.
  • 88. Zhang, X., Sanderson, D.J., 1996. Numerical modelling of the effects of fault slip on fluid flow around extensional faults. Journal of Structural Geology, 18: 109-119.
  • 89. Zheng, S.-Y., Corbett, P., Ryseth, A., Stewart, G., 2000. Uncertainty in well test and core permeability analysis: a case study in fluvial channel reservoirs, northern North Sea, Norway. AAPG Bulletin, 84: 1929-1954.
  • 90. Ziegler, P.A. (ed.), 1992. Geological Atlas of Western and Central Europe, 2nd edition. Geological Society of London, Hague.
  • 91. Zoback, M.D., 2007. Reservoir Geomechanics. Cambridge University Press, Cambridge.
  • 92. Złoże ropy i koncesja Kamień Pomorski. In: salon24.pl https://www.salon24.pl/u/wnukowi/799339, zloze-ropy-i-koncesja-kamien-pomorski. Accessed 19 Nov 2020.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8e45f065-8c26-40a9-8774-becddd72bc7f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.