PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Performance evaluation of chemical coagulation process to treat bagasse wastewater : modeling and optimization

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this present study, chemical coagulation process (CC) treatment process was investigated under different conditions such as pH, ferric chloride dose, agitation time and settling time to treat bagasse wastewater using response surface methodology (RSM). The outcomes were evaluated using Pareto analysis of variance (ANOVA) and second order polynomial models were created with the aim of being able to predict the responses. Ideal conditions were observed to be as per the following: agitation time of 25 min, pH of 7, ferric chloride dose of 6 g/L and settling time of 60 min. Under these conditions, turbidity removal of 62%, COD removal of 67%, TDS removal 53% and sludge production of 32 mL/L were obtained with operating cost of 3.50 Rupee/L. The mechanism of CC was analyzed using XRD spectrum and founds to be adsorption.
Rocznik
Strony
99--104
Opis fizyczny
Bibliogr. 33 poz., rys., tab.
Twórcy
  • Excel College of Engineering and Technology, Department of Chemistry, Komarapalayam, Namakkal-637303, TN, India
autor
  • Anna University, Department of Chemical Engineering, AC Tech Campus, Chennai-600025, TN, India
autor
  • King Saud University, Department of Botany and Microbiology, College of Science, Post box 2455, Riyadh 11451, Saudi Arabia
Bibliografia
  • 1. Chinnaraj, S, & Venkoba Rao, V. (2006). Implementation of an UASB anaerobic digester at bagasse-based pulp and paper industry. Biomass Bioenerg 30, 273–277.
  • 2. Thirugnanasambandham, K., Sivakumar, V. & Prakash Maran, J. (2013). Treatment of egg processing industry effluent using chitosan as an adsorbent. J. Serb. Chem. Soc. DOI: 10.2298/JSC130201053T.
  • 3. Sridhar, R., Sivakumar, V., Prince Immanuel, V. & Prakash Maran J. (2011). Treatment of pulp and paper industry bleaching effluent by electrocoagulation process. J. Hazard. Mater. 186, 1495–1502.
  • 4. Wong, S.S., Teng, T.T., Ahmada, A.L., Zuhairi, A. & Najafpour, G. (2006). Treatment of pulp and paper mill wastewater by poly acrylamide (PAM) in polymer induced flocculation. J. Hazard. Mater. 135, 378–388. DOI: 10.1016/j.jhazmat.2005.11.076.
  • 5. Chiang, L., Chang, J. & Wen, T. (1995). Indirect oxidation effect in electrochemical oxidation treatment of landfill leachate. Water Res. 29, 671. DOI: 10.1016/0043-1354(94)00146-X.
  • 6. Wei Lung, C., Chihta, W., Wenchun, C. & Shihyu, C. (2010). Adsorption treatment of oxide chemical mechanical polishing wastewater from a semiconductor manufacturing plant by electrocoagulation. J. Hazard. Mater. 180, 217–224.
  • 7. Cansares, P., Martinez, F., Jimenez, C., Saez, C. & Rodrigo, M. (2008). Coagulation and electrocoagulation of oil-in-water emulsion. J. Hazard. Mater. 151, 44–51.
  • 8. Muftah, H.E.N., Sulaiman, A., Amal, A. & Souzan, M. (2009). Assessment of electrocoagulation for the treatment of petroleum refinery wastewater. J. Environ. Manage 91, 180–185.
  • 9. Thirugnanasambandham, K., Sivakumar, V. & Prakash Maran, J. (2013). Application of chitosan as an adsorbent to treat rice mill wastewater- Mechanism, modeling and optimization. Carbohyd Polym. 97, 451–457.
  • 10. Prakash Maran, J., Manikandan, S., Thirugnanasambandham, K., Vigna Nivetha, C. & Dinesh, R. (2013). Box-Behnken design based statistical modeling for ultrasound-assisted extraction of corn silk polysaccharide. Carbohyd Polym. 92, 604–611.
  • 11. Prakash Maran, J., Sivakumar, V., Thirugnanasambandham, K. & Sridhar, R. (2013). Model development and process optimization for solvent extraction of polyphenols from red grapes using Box- Behnken design. Prep Biochem Biotech. DOI: 10.1080/10826068.2013.791629.
  • 12. Fontanier, V., Farines, V., Albet, J., Baig, S. & Molinier, J. (2006). Study of catalyzed ozonation for advanced treatment of pulp and paper mill effluents. Water Res. 40, 303–310. DOI: 10.1016/J.WATRES.2005.11.007.
  • 13. Wang, B., Kong, W. & Ma, H. (2007). Electrochemical treatment of paper mill wastewater using three-dimensional electrodes with Ti/Co/SnO2-Sb2O5anode. J. Hazard. Mater. 146, 295–301. DOI: 10.1016 /J.JHAZMAT. 2006.12.031.
  • 14. Amat, A.M., Arques, A., Lopez, F. & Miranda, M.A. (2005). Solar photo-catalysis to remove paper mill wastewater pollutants. Solar Energy 79, 393–401. DOI: 10.1016/J.SOLENER.2005.02.021
  • 15. Kim, S., Geissen, S. & Vogelpohl, A. (1997). Landfill leachate treatment by a photoassisted fenton reaction, Water Sci. Technol. 35, 239. DOI: 10.1016/J.WATRES.2003.08.007.
  • 16. APHA. (1995). Standard Methods for the Examination of Water and Wastewater. http://top-pdf.com/apha-2120-f.html
  • 17. Shen, Z.M., Yang, Hu, X.F., Lei, Y.M., Ji, X.L., Jia, J.P. & Wang, W.H. (2005). Dual electrodes oxidation of dye wastewater with gas diffusion cathode. Environ. Sci. Technol. 39, 1819–1826. DOI: 10.1021/es901269s.
  • 18. Panizza, M., Bocca, C. & Cerisola, G. (2005). Electrochemical treatment of wastewater containing polyaromatic organic pollutants. Water Res. 34, 2601–2605. DOI: 10.1021/es049730n.
  • 19. Fahidy, T.Z. (1985). Principles of Electrocheical reactor analysis, Elsevier, Amsterdam, 136–140. www.fkit.hr/files/dodiplomski/stari/C
  • 20. Walsh, F.C. (2001). Electrochemical technology for environmental treatment and clean energy conversion. Pure Appl. Chem. 73, 12, 1819–1837. DOI: 10.1351/pac200173121819.
  • 21. Ugurlu, M., Karaoglu, M.H. & Kula, I. (2006). Experimental investigation of chemical oxygen demand, lignin and phenol removal from paper mill effluents using three-phase-threedimensional electrode reactor. Polish. J. Environ. Stud. 15, 647–654.
  • 22. Mustoe, L.H. & Wragg, A.A. (1981). Effects of flow and electrical arrangement on the performance of some simple electrochemical reactor systems. J. Chem. Technol. Biotechnol. 31, 317–326. DOI: 10.1002/jctb.503310143.
  • 23. Levenspiel, O. (1999). Chemical Reaction Engineering, John Wiley & Sons, New York. http://khup.com/keyword/chemical- reaction-engineering-levenspiel.html
  • 24. Dara, S.S. (1991). A Text Book of experiments and calculations – Engineering chemistry; Chand .S.and company Ltd., New Delhi. http://khup.com/keyword/engineering-chemistry-schand-publications.html
  • 25. Dümmling, S., Eichhorn, E., Schneider, S., Speiser, B. & Würde, M. (1996). Recycling of the Supporting Electrolyte Tetra(n-butyl)ammonium Hexafl uorophosphate from Used Electrolyte Solutions. Current Separations 15, 53–56. http://www.currentseparations.com/issues/15-2/cs15-2b.pdf
  • 26. Nassar, M.M., Fadaly, O.A. & Sedahmed, G.H. (1983). A new electrochemical technique for bleaching cellulose pulp. J. Appl. Electrochem. 13, 663–667. DOI: 10.1007/BF00617824.
  • 27. Alverez-Gall Bergos, A. & Pl Etch Er, D. (1999). The removal of low level organics via hydrogen peroxide formed in a veticulated vitreous carbon cathode cell. Part: The removal of phenols and related compounds from aqueous effluents, Electrochim. Acta. 44, 2483. DOI: 10.1016/S0043-1354(01)00147-6.
  • 28. Chen, X., Ch En, G.H. & Yu E, P.L. (2000). Separation of pollutants from restaurant wastewater by electrocoagulation, Sep. Purif. Technol. 19, 65. DOI: 10.1016/S1383-5866(99)00072-6.
  • 29. Raghu, S. & Ahmed Basha, C. (2007). Electrochemical treatment of Procion Black 5B using cylindrical flow reactor – A pilot plant study. J. Hazard. Mater. B139, 381–390, DOI: 10.1016/j.jhazmat.2006.06.082.
  • 30. Sharari, M., Jahan Latibari, A., Guillet, A., Aurousseau, M., Mouhamadou, B., Rafeiee, G.H., Mirshokraei, A. & Parsapaghouh, D. (2010). Application of the white rot fungus Phanerochaete chrysosporium in biotreatment of bagasse effluent. Biodegradation 2010. 22(2), 421–430.
  • 31. Solanki, A.B., Parikh, J.R. & Parikh, R.H. (2007). Formulation and optimization of piroxicam proniosomes by 3-factor, 3-level Box–Behnken design. AAPS Pharm Sci Tech. 8, 43–49.
  • 32. Batalon, J.T. & Madamba, P.S. (2001). Optimization of coir dust compaction using the response surface methodology approach. J. Agric. Eng. Res. 78, 167–175.
  • 33. Bayraktar, E. (2001). Response surface optimization of the separation of DL-tryptophan using an emulsion liquid membrane, Process Biochem. 37, 169–175.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8e4283ee-6a7d-472c-924b-36ba5b013fbc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.