PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Determining the shortest charging time of batteries using SOC set point at constant current – constant voltage mode

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Badanie najkrótszego czasu ładowania baterii przy ładowaniu stałym prądem I stałym napięciem
Języki publikacji
EN
Abstrakty
EN
A method of determining the shortest charging time of 3 types of batteries: Lead Acid, Lithium Ion, Nickel metal hydride. Constant current (CC) and constant voltage (CV) charging modes are applied. Initially filled using the constant current method, the voltage and SOC increase over time. When reaching a certain SOC, as a set point, the voltage becomes constant and the charging current decreases until the battery is fully charged. The results show that the fastest charging time by for Li-Ion is 2.632 hours, Lead Acid is 4.619 hours, Ni-mH is 6.714 hours.
PL
Opisano metodę określania najkrótszego czasu ładowania trzech typów baterii: ołowiowej, litowo-jonowej i niklowej. Rozpatrywano tryb stałego prądi I stałego napięcia. Po osiągnięciu pewnej wartości SOC (State of Cargin) pozostaje stałe napięcie a prąd stopniowo maleje. Otrzymano następujące rezultaty: liowo jonowe 2.6 godz, ołowiowe 4.6 godz I niklowe 6.7 godz.
Rocznik
Strony
54--59
Opis fizyczny
Bibliogr. 19 poz., rys., tab.
Twórcy
  • Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia
  • Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia
  • Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesi
autor
  • Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesi
Bibliografia
  • [1] Soedibyo, F. A. Pamuji, S. Anam, M. Ashari, and M. Ridwan, “Seawater battery application for sailing boat application using particle swarm optimization based maximum power point tracking,” , (2019), Int. J. Mech. Eng. Technol., no. 1, pp. 808– 820.
  • [2] M. Ashari, C. V. Nayar, and W. W. L. Keerthipala, “Optimum operation strategy and economic analysis of a photovoltaicdiesel- battery-mains hybrid uninterruptible power supply,”, (2001), Renew. Energy, pp.247-254.
  • [3] A. Łebkowski, “Electric Vehicle Battery Tester,” Prz. Elektrotechniczny, vol. 93, no. 4, pp. 161–165, (2017), doi: 10.15199/48.2017.04.39
  • [4] L. Tang, G. Rizzoni, and A. Cordoba-Arenas, “Battery Life Extending Charging Strategy for Plug-in Hybrid Electric Vehicles and Battery Electric Vehicles,”, (2016), IFACPapersOnLine, vol. 49, no. 11, pp. 70–76, , doi: 10.1016/j.ifacol.2016.08.011.
  • [5] B. Wang, J. Xu, B. Cao, Q. Li, and Q. Yang, “Compound-type hybrid energy storage system and its mode control strategy for electric vehicles,” J. Power Electron., vol. 15, no. 3, pp. 849– 859, (2015), doi: 10.6113/JPE..15.3.849.
  • [6] Faanzir, Soedibyo, and M. Ashari, “Optimum sizing of marine current/PV/battery hybrid power system for isolated island minigrid,”, ( Proc. - 2017 Int. Semin. Appl. Technol. Inf. Commun. Empower. Technol. a Better Hum. Life, iSemantic 2017, vol. -Janua, no. pp. 233–237, 2017, doi: 10.1109/ISEMANTIC.2017.8251875.
  • [7] D. P. Dahnil, S. Selamat, K. A. Abu Bakar, R. Hassan, and A. G. Ismail, “A new method for battery lifetime estimation using experimental testbed for Zigbee wireless technology,”, (2018), Int. J. Adv. Sci. Eng. Inf. Technol., vol. 8, no. 6, pp. 2654–2662, , doi: 10.18517/ijaseit.8.6.6388.
  • [8] E. Chatzinikolaou and D. J. Rogers, “A Comparison of Grid- Connected Battery Energy Storage System Designs,”, (2017), IEEE Trans. Power Electron., vol. 32, no. 9, pp. 6913–6923, doi: 10.1109/TPEL.2016.2629020.
  • [9] Z. Haizhou, “Modeling of lithium-ion battery for charging/discharging characteristics based on circuit model,” , (2017) Int. J. Online Eng., vol. 13, no. 6, pp. 86–95, doi: 10.3991/ijoe.v13i06.6799.
  • [10] J. Poonsuk and S. Pongyupinpanich, “Design and estimation of state-charging applied for lithium-ion battery based on Matlab-Simulink,” (2016) Manag. Innov. Technol. Int. Conf. MITiCON pp. MIT176–MIT179, 2017, doi: 10.1109/MITICON.2016.8025222.
  • [11] K. Liu, K. Li, H. Ma, J. Zhang, and Q. Peng, “Multi-objective optimization of charging patterns for lithium-ion battery management,”, (2018), Energy Convers. Manag., vol. 159, no. October 2017, pp. 151–162, doi: 10.1016/j.enconman.2017.12.092.
  • [12] D. Roiu, A. Primon, M. Rossella, and M. Ornato, “12V battery modeling: Model development, simulation and validation,” (2017), Int. Conf. Electr. Electron. Technol. Automot., , doi: 10.23919/EETA.2017.7993215.
  • [13] H. Liu, B. Qi, and M. Zheng, “A new equivalent circuit model of Ni-MH battery pack based on the subspace identification method,”, (2014.), IEEE Transp. Electrif. Conf. Expo, ITEC Asia-Pacific - Conf. Proc., pp. 1–4, 2014, doi: 10.1109/ITECAP. 2014.6940976.
  • [14] S. M. G. Mousavi and M. Nikdel, “Various battery models for various simulation studies and applications,”, (2014), Renew. Sustain. Energy Rev., vol. 32, pp. 477–485, , doi: 10.1016/j.rser.2014.01.048.
  • [15] N. Mars, F. Krouz, F. Louar, and L. Sbita, “Comparison study of different dynamic battery model,”, (2014) Int. Conf. Green Energy Convers. Syst. GECS 2017, 2017, doi: 10.1109/GECS..8066241.
  • [16] N. Chawla, N. Bharti, and S. Singh, “Recent advances in nonflammable electrolytes for safer lithium-ion batteries,”, (2019), Batteries, vol. 5, no. 1, pp. 1–25, doi: 10.3390/batteries5010019.
  • [17] M. M. Hoque, M. A. Hannan, and A. Mohamed, “Charging and discharging model of lithium-ion battery for charge equalization control using particle swarm optimization algorithm,”, (2016), J. Renew. Sustain. Energy, vol. 8, no. 6, , doi: 10.1063/1.4967972.
  • [18] S. M. G. Mousavi and M. Nikdel, “Various battery models for various simulation studies and applications,” ,(2014), Renew. Sustain. Energy Rev., vol. 32, pp. 477–485.
  • [19] N. Mars, F. Krouz, F. Louar, and L. Sbita, “Comparison study of different dynamic battery model,”, (2017). Int. Conf. Green Energy Convers. Syst. GECS 2017.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8e3ecc02-ab20-4174-9ce5-5c70958ca906
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.