PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Two-dimensional analysis of functionally graded thermoelastic microelongated solid

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present research focuses on two-dimensional deformation in a functionally graded thermoelastic micro-elongated medium. It is supposed that the non-homogeneous properties (thermal and mechanical) of FGM are in the x-direction. The normal mode technique is used to acquire the analytic expression for displacement components, stress, micro-elongation and temperature. The cause and effect relationship of non-homogeneity and physical quantities is shown through graphical results.
Rocznik
Strony
155--169
Opis fizyczny
Bibliogr. 32 poz., wykr.
Twórcy
  • Department of Mathematics, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, INDIA
  • Department of Mathematics, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, INDIA
Bibliografia
  • [1] Biot M. A. (1956): Theory of propagation of elastic waves in a fluid‐saturated porous solid. II. Higher frequency range.– The J. of the Acoust. Soci. of America, vol.28, No.2, pp.179-191.
  • [2] Eringen A.C. and Suhubi E.S. (1964): Nonlinear theory of simple micro-elastic solids.– Inter. J. of Engng. Sci., vol.2, No.2, pp.189-203.
  • [3] Suhubi E.S. and Eringen A.C. (1964):Nonlinear theory of micro-elastic solids.– Inter. J. of Engng. Sci., vol.2, No.4, pp.389-404.
  • [4] Eringen A.C. (1966b): Linear Theory of Micropolar Elasticity.– J. of Math. and Mech., vol.15, No.6, pp.909-923.
  • [5] Eringen A.C. (1965): Linear theory of micropolar elasticity.– ONR Technical Report No.29, School of Aeronautics, Aero. and Engi. Sci., Purdue University, West Lafayette, IN.
  • [6] Eringen A.C. (1966): A unified theory of thermomechanical materials.– Inter. J. of Engng. Sci., vol.4, No.2, pp.179-202.
  • [7] Dhaliwal R.S., Majumdar S.R. and Wang J. (1997): Thermoelastic waves in an infinite solid caused by a line heat source.– Inter. J. of Math. and Mathem. Sci., vol.20, No.2, pp.323-334.
  • [8] Sharma J.N. and Chauhan R.S. (2001): Mechanical and thermal sources in a generalized thermoelastic half-space.–J. of Therm. Stres., vol.24, No.7, pp.651-675.
  • [9] Ailawalia P. and Singla A. (2019): A thermoelastic micro elongated layer immersed in an infinite fluid and subjected to laser pulse heating.– Mechanics and Mechanical Engineering, vol.23, No.1, pp.233-240.
  • [10] Ailawalia P., Sachdeva S.K. andPathania D.S. (2019). A two dimensional problem on laser pulse heating in thermoelasticmicroelongated solid.– Archives of Thermodynamics, vol.40, No.2, pp.69-85, DOI: 10.24425/ather.2019.129542.
  • [11] Shaw S. and Mukhopadhyay B. (2012): Periodically varying heat source response in a functionally graded microelongated medium.– App.Math. and Comput., vol.218, No.11, pp.6304-6313.
  • [12]Shaw S. and Mukhopadhyay B. (2013): Moving heat source response in micropolar half-space with two-temperature theory.– Contin. Mech. and Thermodyn., vol.25, No.2, pp.523-535.
  • [13] Shaw S. and Mukhopadhyay B. (2013): Moving heat source response in a thermoelasticmicroelongated solid.–J. of Engng. Phy. and Thermoph., vol.86, No.3, pp.716-722.
  • [14] Ailawalia P., Kumar S. and Pathania D.S. (2016): Internal heat source in thermoelasticmicroelongated solid under green lindsay theory.– Journal of Theoretical and Applied Mechanics, vol.46, No.2, pp.65-82.
  • [15] Deswal S. and Kalkal K.K. (2014): Plane waves in a fractional order micropolar magneto-thermoelastic half-space.–Wave Motion, vol.51, No.1, pp.100-113.
  • [16] Marin M., Vlase S. and Paun M. (2015): Considerations on double porosity structure for micropolar bodies.– AIP Advan., vol.5, 037113.
  • [17] Said S.M., Elmaklizi Y.D. and Othman M.I. (2017): A two-temperature rotating-micropolarthermoelastic medium under influence of magnetic field.– Chaos, Solitons and Fractals, vol.97, pp.75-83.
  • [18] Khan A.A., Bukhari R., Marin M. and Ellahi R. (2019): Effects of chemical reaction on third-grade MHD fluid flow under the influence of heat and mass transfer with variable reactive index.– Heat Trans. Research, vol.50, No.11, pp.1061-1080.
  • [19] Bhatti M.M., Marin M., Zeeshan A., Ellahi R. and Abdelsalam S.I. (2020): Swimming of motile gyrotactic microorganisms and nanoparticles in blood flow through anisotropically tapered arteries.– Front. in Phys., vol.8, Article ID.95, pp.1-12.
  • [20] Reddy J.N. and Chin C.D. (1998): Thermomechanical analysis of functionally graded cylinders and plates.– J. of Thermal Stresses, vol.21, No.6, pp.593-626.
  • [21] Wang B. L. and Mai Y.W. (2005): Transient one-dimensional heat conduction problems solved by finite element.– Inter. J. of Mech. Sci., vol.47, No.2, pp.303-317.
  • [22] Abbas I.A. and Zenkour A.M. (2013): LS model on electro-magneto-thermoelastic response of an Infinite functionally graded cylinder.– Composite Structures, vol.96, pp.89-96.
  • [23] Aboudi J., Pindera M. J. and Arnold S.M. (1995): Thermo-inelastic response of functionally graded composites.– Inter. J. of Solids and Struct., vol.32, No.12, pp.1675-1710.
  • [24] Abd-Alla A.M., Abo-Dahab S.M., Al-Thamali T.A. and Mahmoud S.R. (2013): Influence of the rotation and gravity field on stonely waves in a non-homogeneous orthotropic elastic medium.– J. of Comp. and Theor. NaNo.Sci., vol.10, No.2, pp.297-305.
  • [25] Abbas I.A. (2014): Nonlinear transient thermal stress analysis of thick-walled FGM cylinder with temperature-dependent material properties.– Meccanica, vol.49, No.7, pp.1697-1708.
  • [26] Sankar B.V. and Tzeng J.T. (2002): Thermal stresses in functionally graded beams.– AIAA j., vol.40, No.6, pp.1228-1232.
  • [27] Mishra K. C., Sharma J. N. and Sharma P. K. (2017): Analysis of vibrations in a nonhomogeneous thermoelastic thin annular disk under dynamic pressure.– Mech. Based Design of Struct. and Machines, vol.45, No.2, pp.207-218.
  • [28] Gunghas A., Kumar R., Deswal S. and Kalkal K.K. (2019): Influence of rotation and magnetic fields on a functionally graded thermoelastic solid subjected to a mechanical load.– J. of Math., vol.2019, Article ID 1016981, https://doi.org/10.1155/2019/1016981.
  • [29] Kumar Kalkal K., Gunghas A. and Deswal S. (2020): Two-dimensional magneto-thermoelastic interactions in a micropolar functionally graded solid.– Mecha. Based Design of Struct. and Mach., vol.48, No.3, pp.348-369.
  • [30] Ailawalia P. and Gupta D. (2022): Two-dimensional deformations in a functionally graded orthotropic micropolar solid.– Mech. Based Design of Struct. and Mach, (In Press).
  • [31] Eringen A. C. (2012): Microcontinuum Field Theories: I. Foundation and Solids.– Springer Science and Business Media. New York. ISBN 978-1-4612-6815-4.
  • [32] Kiris A. and İnan E. (2008): 3-D Vibration analysis of the rectangular micro damaged plates.– In Vibration Problems ICOVP-2007, Springer, Dordrecht, vol.126, pp.207-214.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8e3bc7f2-130b-4441-ad61-fe26ed97e70b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.