PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Using brain-computer interface technology as a controller in video games

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Zastosowanie technologii interfejsów mózg-komputer jako kontrolera do gier wideo
Języki publikacji
EN
Abstrakty
EN
Nowadays, control in video games is based on the use of a mouse, keyboard and other controllers. A Brain Computer Interface (BCI) is a special interface that allows direct communication between the brain and the appropriate external device. Brain Computer Interface technology can be used forcommercial purposes, for example as a replacement for a keyboard,mouse or other controller. This article presents a method of controlling video games using the EMOTIV EPOC + Neuro Headset as a controller.
PL
W obecnych czasach sterowanie w grach wideo jest oparte na wykorzystaniu myszki, klawiatury oraz innych kontrolerów. Brain-Computer Interface w skrócie BCI to specjalnyinterfejspozwalający na bezpośrednią komunikację międzymózgiem,a odpowiednim urządzeniem zewnętrznym. Technologia Brain-Computer Interface może zostać użyta w celach komercyjnych na przykład jako zamiennik myszki klawiatury lub innego kontrolera. Wartykule przedstawiono sposób sterowania w grach wideo przy pomocy neuro-headsetu EMOTIV EPOC+ jako kontrolera.
Rocznik
Strony
26--31
Opis fizyczny
Bibliogr. 32 poz., tab., rys.
Twórcy
  • Opole University of Technology, Faculty of Electrical Engineering, AutomaticControl and Informatics
  • Opole University of Technology, Faculty of Electrical Engineering, AutomaticControl and Informatics
Bibliografia
  • [1] Acharya U. R., Sree S. V., Swapna G., Martis R. J., Suri J. S.: Automated EEG analysis of epilepsy: A review. Knowledge-Based Systems 45/2013, 147–165.
  • [2] Al-Fahoum A. S., Al-Fraihat A. A.: Methods of EEG Signal Features Extraction Using Linear Analysis in Frequency and Time-Frequency Domains. ISRN Neuroscience 2014, 1–7.
  • [3] Amin H. U., Mumtaz W., Subhani A. R., Saad M. N., Malik A. S.: Classification of EEG Signals Based on Pattern Recognition Approach. Frontiers in Computational Neuroscience 11/2017.
  • [4] Bryan M., Green J., Chung M., Chang L., Scherer R., Smith J., et al.: An adaptive brain-computer interface for humanoid robot control. 2011 11th IEEE-RAS International Conference on Humanoid Robots 2011, 199–204.
  • [5] Chen Y.-Y., Lai H.-Y., Lin S.-H., Cho C.-W, Chao W.-H., Liao C.-H., et al.: Design and fabrication of a polyimide-based microelectrode array: Application in neural recording and repeatable electrolytic lesion in rat brain. Journal of Neuroscience Methods 182(1)/2009, 6–16.
  • [6] Choi J. H., Chung Y., Oh S.: Motion control of joystick interfaced electric wheelchair for improvement of safety and riding comfort. Mechatronics 59/2019, 104–114.
  • [7] Dicianno B. E., Cooper R. A., Coltellaro J.: Joystick Control for Powered Mobility: Current State of Technology and Future Directions. Physical Medicine and Rehabilitation Clinics of North America 21(1)/2010, 79–86.
  • [8] Gao X., Xu D., Cheng M., Gao S.: A bci-based environmental controller for the motion-disabled. IEEE Transactions on Neural Systems and Rehabilitation Engineering 11(2)/2003, 137–140.
  • [9] Henriksen E. H., Schjølberg I., Gjersvik T. B.: Adaptable Joystick Control System for Underwater Remotely Operated Vehicles. IFAC-PapersOnLine 49(23)/2016, 167–172.
  • [10] Kerous B., Skola F., Liarokapis F.: EEG-based BCI and video games: A progress report. Virtual Reality 22(2)/2017, 119–135.
  • [11] Kotowski K., Stapor K., Leski J., Kotas M.: Validation of EMOTIV EPOC for extracting ERP correlates of emotional face processing. Biocybernetics and Biomedical Engineering 38(4)/2018, 773–781.
  • [12] Lecuyer A., Lotte F., Reilly R., Leeb R., Hirose M., Slater M.: Brain-Computer Interfaces, Virtual Reality, and Videogames. Computer 41(10)/2008, 66–72.
  • [13] Lotte F., Congedo M., Lécuyer A., Lamarche F., Arnaldi B.: A review of classification algorithms for EEG-based brain–computer interfaces. Journal of Neural Engineering 4(2)/2007.
  • [14] Modarres M. H., Kuzma N. N., Kretzmer T., Pack A. I., Lim M. M.: EEG slow waves in traumatic brain injury: Convergent findings in mouse and man. Neurobiology of Sleep and Circadian Rhythms 2/2017, 59–70.
  • [15] Nicolas-Alonso L. F., Gomez-Gil J.: Brain Computer Interfaces, a Review. Sensors 12(2)/2012, 1211–1279.
  • [16] Paszkiel S.: Data Acquisition Methods for Human Brain Activity. Analysis and Classification of EEG Signals for Brain–Computer Interfaces Studies in Computational Intelligence. Springer 852/2020, 3–9,
  • [http://doi.org/10.1016/j.procs.2017.09.158].
  • [17] Paszkiel Sz.: Facial expressions as an artifact in EEG signal used in the process of controlling a mobile robot with LabVIEW. Przegląd Elektrotechniczny 4/2017, 156–160, [http://doi.org/10.15199/48.2017.04.38].
  • [18] Pour P. A., Gulrez T., Alzoubi O., Gargiulo G., Calvo R. A.: Brain-computer interface: Next generation thought controlled distributed video game development platform. IEEE Symposium On Computational Intelligence and Games 2008.
  • [19] Rao R., Scherer R.: Brain-Computer Interfacing [In the Spotlight. IEEE Signal Processing Magazine 27(4)/2010, 152–150.
  • [20] Rebsamen B., Guan C., Zhang H., Wang C., Teo C., Ang M.H., et al.: A Brain Controlled Wheelchair to Navigate in Familiar Environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 18(6)/2010, 590–598.
  • [21] Royer A. S., Doud A. J., Rose M. L., He B.: EEG Control of a Virtual Helicopter in 3-Dimensional Space Using Intelligent Control Strategies. IEEE Transactions on Neural Systems and Rehabilitation Engineering 18(6)/2010, 581–589.
  • [22] Song Y.-K., Borton D., Park S., Patterson W., Bull C., Laiwalla F. et al.: Active Microelectronic Neurosensor Arrays for Implantable Brain Communication Interfaces. IEEE Transactions on Neural Systems and Rehabilitation Engineering 17(4)/2009, 339–345.
  • [23] Stein A., Yotam Y., Puzis R., Shani G., Taieb-Maimon M.: EEG-triggered dynamic difficulty adjustment for multiplayer games. Entertainment Computing 25/2018, 14–25.
  • [24] Tezza D., Caprio D., Pinto B., Mantilla I., Andujar M.: An Analysis of Engagement Levels While Playing Brain-Controlled Games. Lecture Notes in Computer Science HCI in Games 2020, 361–372.
  • [25] Wang Y., Hong B., Gao, Gao S.: Implementation of a Brain-Computer Interface Based on Three States of Motor Imagery. 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society 2007, 5059–5062.
  • [26] Yu J.-H., Sim K.-B.: Classification of color imagination using EMOTIV EPOC and event-related potential in electroencephalogram. Optik 127(20)/2016, 9711–9718.
  • [27] https://en.wikipedia.org/wiki/DualShock#/media/File:PSX-DualShock-Controller.jpg, accessed: 08.02.2020
  • [28] https://en.wikipedia.org/wiki/Tennis_for_Two#/media/File:Tennis_for_Two_-_Modern_recreation.jpg, accessed: 07.02.2020
  • [29] https://emotiv-website-uploads-live.s3.amazonaws.com/uploads/2016/06/epoc-20-10.jpg, accessed: 07.02.2020
  • [30] https://emotiv-website-uploads-live.s3.amazonaws.com/uploads/2016/06/Epoc-product-image-510x510.png, accessed: 07.02.2020
  • [31] https://www.purepc.pl/gry/historia_kontrolerow_do_gier_pady_joysticki_i_niezwykle_wynalazki, accessed: 08.02.2020
  • [32] https://www.emotiv.com/biometrics-diagram/, accessed: 08.02.2020
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8e3ad01e-f077-4a9a-8e0c-740e97901a6f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.