PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Cyclodextrin-assisted dispersive liquid-liquid microextraction based on solidification of floating organic droplets coupled with HPLC for the determination of pyrethroid residues in cereals

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A simple, rapid, and environmentally friendly sample preparation method for pyrethroids determination in cereals using cyclodextrin-assisted dispersive liquid-liquid microextraction based on solidification of floating organic droplets coupled with high-performance liquid chromatography was established. The cereal samples were extracted with acetonitrile, cleaned up, and concentrated by green extractant menthol via γ-cyclodextrin assisted extraction process. The extractant menthol dispersed as fine droplets in the cyclodextrin solution and then solidified at room temperature for efficient extraction and convenient collection. The optimized method provided good linearity in the range of 0.01–10 mg kg⁻¹ with limits of detection of 3.5–9.5 μg kg⁻¹. The fortified recoveries of three pyrethroids (i.e., lambda-cyhalothrin, deltamethrin, and bifenthrin) in four cereals (i.e., rice, wheat, maize, and millet) at three levels were in the range of 77.6–101.6% with relative standard deviations of 0.6–6.6%. Overall, the proposed method can be successfully applied for the determination of pyrethroids in cereals.
Rocznik
Strony
21--27
Opis fizyczny
Bibliogr. 27 poz., tab., rys., wykr.
Twórcy
  • College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
autor
  • Agricultural Economics and Management College, Shanxi Agricultural University, Taiyuan, Shanxi, 030006, China
autor
  • College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
  • Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
autor
  • College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
  • Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
autor
  • Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
autor
  • Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
autor
  • College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
autor
  • Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
Bibliografia
  • 1. Anadon, A; Martinez-Larranaga, M. R.; Martinez, M. A. Use and abuse of pyrethrins and synthetic pyrethroids in veterinary medicine. Vet. J. 2009, 182, 7–20. https://doi.org/10.1016/j.tvjl.2008.04.008i.
  • 2. Yang, C.; Lim, W.; Song, G. Mediation of oxidative stress toxicity induced by pyrethroid pesticides in fish. Comp. Biochem. Physiol. C-Toxicol Pharmacol. 2020, 234, 11. https://doi.org/10.1016/j.cbpc.2020.108758i.
  • 3. Arafa, W. M.; Mohammed, A. N.; El-Ela, F. I. A. Acaricidal efficacy of deltamethrin-zinc oxide nanocomposite on Rhipicephalus (Boophilus) annulatus tick. Vet. Parasitol. 2019, 268, 36–45. https://doi.org/10.1016/j.vetpar.2019.03.002i.
  • 4. Djouaka, R.; Soglo, M. F.; Kusimo, M. O.; Adeoti, R.; Talom, A.; Zeukeng, F.; Paraiso, A.; Afari-Sefa, V.; Saethre, M. G.; Manyong, V.; et al. The rapid degradation of lambda-cyhalothrin makes treated vegetables relatively safe for consumption. Int. J. Env Res. Pub He 2018, 15. https://doi.org/10.3390/ijerph15071536i.
  • 5. Weis, L.; Schneider, R. D. D.; Hoeltz, M.; Rieger, A.; Tostes, S.; Lobo, E. A. Potential for bifenthrin removal using microalgae from a natural source. Water Sci. Technol. 2020, 82, 1131–41. https://doi.org/10.2166/wst.2020.160i.
  • 6. Horton, M. K.; Jacobson, J. B.; McKelvey, W.; Holmes, D.; Fincher, B.; Quantano, A.; Diaz, B. P.; Shabbazz, F.; Shepard, P.; Rundle, A.; et al. Characterization of residential pest control products used in inner city communities in New York City. J. Expo. Sci. Environ. Epidemiol. 2011, 21, 291–301. https://doi.org/10.1038/jes.2010.18i.
  • 7. Li, W. W.; Morgan, M. K.; Graham, S. E.; Starr J. M. Measurement of pyrethroids and their environmental degradation products in fresh fruits and vegetables using a modification of the quick easy cheap effective rugged safe (QuEChERS) method. Talanta 2016, 151, 42–50. https://doi.org/10.1016/j.talanta.2016.01.009i.
  • 8. Zhu, Q. Y.; Yang, Y.; Zhong, Y. Y.; Lao, Z. T.; O’Neill, P.; Hong, D.; Zhang, K.; Zhao, S. Q. Synthesis, insecticidal activity, resistance, photodegradation and toxicity of pyrethroids (A review). Chemosphere 2020, 254, 17. https://doi.org/10.1016/j.chemosphere.2020.126779i.
  • 9. Marettova, E.; Maretta, M.; Legath, J. Effect of pyrethroids on female genital system. Review. Anim Reprod Sci. 2017, 184, 132–8. https://doi.org/10.1016/j.anireprosci.2017.07.007i.
  • 10. Ji, G. X.; Xia, Y. K.; Gu, A. H.; Shi, X. G.; Long, Y.; Song, L.; Wang, S. L.; Wang, X. R. Effects of non-occupational environmental exposure to pyrethroids on semen quality and sperm DNA integrity in Chinese men. Reprod. Toxicol. 2011, 31, 171–6. https://doi.org/10.1016/j.reprotox.2010.10.005i.
  • 11. Jurewicz, J.; Radwan, P.; Wielgomas, B.; Radwan, M.; Karwacka, A.; Kaluzny, P.; Piskunowicz, M.; Dziewirska, E.; Hanke, W. Exposure to pyrethroid pesticides and ovarian reserve. Environ. Int. 2020, 144, 5. https://doi.org/10.1016/j.envint.2020.106028i.
  • 12. Chormey, D. S.; Zaman, B. T.; Kasa, N. A.; Bakirdere, S. Liquid phase microextraction strategies and their application in the determination of endocrine disruptive compounds in food samples. Trac-Trends Anal. Chem. 2020, 128, 13. https://doi.org/10.1016/j.trac.2020.115917i.
  • 13. Wu, B. Q.; Guo, Z. Y.; Li, X. T.; Huang, X.; Teng, C.; Chen, Z. J.; Jing, X.; Zhao, W. T. Analysis of pyrethroids in cereals by HPLC with a deep eutectic solvent-based dispersive liquid-liquid microextraction with solidification of floating organic droplets. Anal. Methods 2021, 13, 636–41. https://doi.org/10.1039/d0ay02121ki.
  • 14. Mousavi, L.; Tamiji, Z.; Khoshayand, M. R. Applications and opportunities of experimental design for the dispersive liquid-liquid microextraction method - a review. Talanta 2018, 190, 335–56. https://doi.org/10.1016/j.talanta.2018.08.002i.
  • 15. Timofeeva, I.; Kanashina, D.; Kirsanov, D.; Bulatov, A. A heating-assisted liquid-liquid microextraction approach using menthol: separation of benzoic acid in juice samples followed by HPLC-UV determination. J. Mol. Liq. 2018, 261, 265–70. https://doi.org/10.1016/j.molliq.2018.04.040i.
  • 16. Hussin, S. A. M.; Varanusupakul, P.; Shahabuddin, S.; Hui, B. Y.; Mohamad, S. Synthesis and characterization of green menthol-based low transition temperature mixture with tunable thermophysical properties as hydrophobic low viscosity solvent. J. Mol. Liq. 2020, 308, 11. https://doi.org/10.1016/j.molliq.2020.113015i.
  • 17. Shahid, R.; Kazi, T. G.; Afridi, H. I.; Talpur, F. N.; Akhtar, A.; Baig, J. A. Deep-eutectic-solvent-based dispersive and emulsification liquid-liquid microextraction methods for the speciation of selenium in water and determining its total content levels in milk formula and cereals. Anal. Methods 2020, 12, 5186–94. https://doi.org/10.1039/d0ay01517bi.
  • 18. Mohamadhoseini, M.; Mohamadnia, Z. Supramolecular self-healing materials via host-guest strategy between cyclodextrin and specific types of guest molecules. Coord. Chem. Rev. 2021, 432, 37. https://doi.org/10.1016/j.ccr.2020.213711i.
  • 19. Pereira, A. G.; Carpena, M.; Oliveira, P. G.; Mejuto, J. C.; Prieto, M. A.; Gandara, J. S. Main applications of cyclodextrins in the food industry as the compounds of choice to form host-guest complexes. Int. J. Mol. Sci. 2021, 22, 23. https://doi.org/10.3390/ijms22031339i.
  • 20. Chen, S. Y.; Chen, W. C.; Chang, S. Y. Cyclodextrin-assisted dispersive liquid-liquid microextraction for the preconcentration of carbamazepine and clobazam with subsequent sweeping micellar electrokinetic chromatography. J. Sep. Sci. 2018, 41, 1871–9. https://doi.org/10.1002/jssc.201701096i.
  • 21. Jing, X.; Huang, X.; Zhang, Y.; Wang, M.; Xue, H.; Wang, X.; Jia, L. Cyclodextrin-based dispersive liquid-liquid microextraction for the determination of fungicides in water, juice, and vinegar samples via HPLC. Food Chem. 2021, 130664. https://doi.org/10.1016/j.foodchem.2021.130664i.
  • 22. Jia, L. Y.; Huang, X.; Zhao, W. F.; Wang, H. H.; Jing, X. An effervescence tablet-assisted microextraction based on the solidification of deep eutectic solvents for the determination of strobilurin fungicides in water, juice, wine, and vinegar samples by HPLC. Food Chem. 2020, 317, 7. https://doi.org/10.1016/j.foodchem.2020.126424i.
  • 23. Kamatou, G. P. P.; Vermaak, I.; Viljoen, A. M.; Lawrence, B. M. Menthol: a simple monoterpene with remarkable biological properties. Phytochemistry 2013, 96, 15–25. https://doi.org/10.1016/j.phytochem.2013.08.005i.
  • 24. Tang, W. Y.; Zou, C. J.; Da, C.; Cao, Y. X.; Peng, H. A review on the recent development of cyclodextrin-based materials used in oilfield applications. Carbohydr. Polym. 2020, 240, 22. https://doi.org/10.1016/j.carbpol.2020.116321i.
  • 25. Chen, Z. X.; Li, Q.; Yang, T. C.; Zhang, Y. F.; He, M. H.; Zeng, H. Y.; Mai, X. M.; Liu, Y. T.; Fan, H. J. Sequential extraction and enrichment of pesticide residues in Longan fruit by ultrasonic-assisted aqueous two-phase extraction linked to vortex-assisted dispersive liquid-liquid microextraction prior to high performance liquid chromatography analysis. J. Chromatogr. A. 2020, 1619, 11. https://doi.org/10.1016/j.chroma.2020.460929i.
  • 26. Wang, K.; Xie, X. J.; Zhang, Y.; Huang, Y. X.; Zhou, S. Y.; Zhang, W.; Lin, Y. Y.; Fan, H. J. Combination of microwave-assisted extraction and ultrasonic-assisted dispersive liquid-liquid microextraction for separation and enrichment of pyrethroids residues in Litchi fruit prior to HPLC determination. Food Chem. 2018, 240, 1233–42. https://doi.org/10.1016/j.foodchem.2017.08.061i.
  • 27. Zhao, W. F.; Jing, X.; Chang, M. C.; Meng, J. L.; Feng, C. P. Vortex-assisted emulsification microextraction for the determination of pyrethroids in mushroom. B Korean ChemSoc 2019, 40, 943–50. https://doi.org/10.1002/bkcs.11850i.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8e3a53da-d074-41c1-b4ce-9628637afff1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.