PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Robust VF and PQ control of a photovoltaic system connected to grid with battery storage management

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Solidne sterowanie VF i PQ systemu fotowoltaicznego podłączonego do sieci z zarządzaniem akumulatorami
Języki publikacji
EN
Abstrakty
EN
This paper presents an advanced control of photovoltaic system with battery storage system and shows the coordination of the studied system in order to enhance solar energy utilization. This study proposes an approach of coordinated and integrated control of solar PV generators with battery storage control in order to maintain active and reactive power (P-Q) control and to provide voltage and frequency (V-f) support to the grid instead of a high load addition. The description of the studied system is based on a battery energy storage system based (lithium-ion technology), a DC-DC bidirectional power converter in order to connect the battery to the DC bus, DC-DC converter, voltage source inverter and finally the load and the micro-grid. Consequently, the main contribution of the proposed control methods lies in the coordination between the different controls methods proposed: battery control at the PV side and V-f/P-Q control algorithm at the inverter side. A simulation using the Matlab/Simulink software has been performed, to confirm that the proposed control model is able to provide voltage and frequency support to the grid and to maintain active and reactive power control instead of a high load addition.
PL
Niniejszy artykuł przedstawia zaawansowaną kontrolę systemu fotowoltaicznego z systemem baterii i pokazuje koordynację badanego systemu w celu zwiększenia wykorzystania energii słonecznej. W opracowaniu zaproponowano podejście polegające na skoordynowanym i zintegrowanym sterowaniu generatorami fotowoltaicznymi z kontrolą akumulatorów w celu utrzymania kontroli mocy czynnej i biernej (P-Q) oraz zapewnienia wsparcia napięcia i częstotliwości (V-f) dla sieci zamiast dodawania wysokiego obciążenia. Opis oparty jest na systemie akumulacji energii akumulatora (technologia litowo-jonowa), dwukierunkowym konwerterze mocy DC-DC w celu podłączenia akumulatora do szyny DC, przetwornicy DC-DC, falownika źródła napięcia i wreszcie obciążenie. W związku z tym główny wkład proponowanych metod sterowania polega na koordynacji różnych proponowanych metod sterowania: kontrolą baterii po stronie PV i algorytm sterowania V-f / P-Q po stronie falownika. Przeprowadzono symulację za pomocą oprogramowania Matlab / Simulink, aby potwierdzić, że proponowany model sterowania jest w stanie zapewnić wsparcie napięcia i częstotliwości dla sieci oraz utrzymać kontrolę mocy czynnej i biernej zamiast dodatku o wysokim obciążeniu.
Rocznik
Strony
32--38
Opis fizyczny
Bibliogr. 21 poz., rys., tab.
Twórcy
  • National School of Applied Sciences Khouribga, Sultan Moulay Slimane University. Khouribga, 1, SAID HAJJI, Street, LAYMOUNE neighbhood,Morocco
  • Superior School of Technology, Moulay Slimane University, Mghila, BP 591,Béni-mellal, Morocco
  • National School of Application Sciences Khouribga,Sultan Moulay Slimane University, Béni Amir, BP 77, Khouribga, Morocco
Bibliografia
  • [1] L. Baoqi, Z. Yanhu , H. Bing, X. Liying and W. Zhao “An integrated control strategy of PV-battery hybrid systems," in International Power Electronics and Application Conference and Exposition, PEAC 2104, pp. 419-422.
  • [2] C. K. Sao and P. W. Lehn, “Control and power management of converter fed micro grids," IEEE Trans. Power Syst., vol. 23, no. 3, pp. 1088-1098, 2008.
  • [3] “ESA - Energy Storage Association," 2016. [Online], available: ww.energystorage.org,.
  • [4] S. Sieling, J. Welsch and H-J. Allien “Modeling and evaluation of combined photovoltaic-battery systems in the decentralized German power generation" in International Conference Renewable Energy Research and Application, ICRERA, pp. 770-775.
  • [5] L. D. Watson and J. W. Kimball, “Frequency regulation of a micro grid using solar power," in Twenty-Sixth Annual IEEE Applied Power Electronics Conference and Exposition (APEC) April 2011, pp. 321-326, 2011.
  • [6] S. Adhikari, L. Fangxing, “Coordinated V-f and P-Q control of solar photovoltaic generators with MPPT and battery storage in micro grids," IEEE Trans. Smart Grid, vol. 5, no. 3, pp. 1270- 1281, 2014.
  • [7] T. Ota, K. Mizuno, K. Yukita, H. Nakano, Y. Goto and K. Ichiyanagi, “Study of load frequency control for a microgrid," in Australasian Universities Power Engineering Conference, AUPEC 2007, pp. 1-6. 38 PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 95 NR 12/2019
  • [8] A.H. Mollah, G.K.Panda and P. K. Saha , “Three Phase Grid Connected Photovoltaic System with Maximum Power Point Tracking," in International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering., vol. 4, no. 5, p. ISSN (Online): 2278 - 8875.
  • [9] A. Sayal, P.C. Sekhar and S. Mishra “A Review on Maximum Power Point Tracking Techniques for Photovoltaic Power Generating Systems," in National Electrical Engineering Conference on Power and Energy Systems for Tomorrow, NEEC-2011.
  • [10] T. Laagoubi, M. Bouzi, and M. Benchagra, “Analysis and comparison of MPPT nonlinear controllers for PV system," in International Renewable and Sustainable Energy Conference (IRSEC), 2015.
  • [11] T. Nguyen, A. Luo, “Multifunction converter based on Lyapunov function used in a photovoltaic system," Turkish Journal of Electrical Engineering and Computer Sciences vol. 22, no. 4, pp. 893-908, 2014.
  • [12] A. Almula, G. M. Gebreel, “Simulation and Implementation of Two- Level and Three-Level Inverters By Matlab and Rt-Lab," MSc Thesis, p. 155, 2011.
  • [13] H. Ouatman, M. Moussaid, M. Cherkaoui “Modeling and Control of a Grid-Connected PV Energy Conversion System," vol. 10, pp. 484-492, 2015.
  • [14] S. Juing-Huei, C. Chao-Liang, C. Jiann-Jong and W. Chien- Ming, “SIMULINK behavior models for dc-dc switching converter circuits using PWM control ICs," Int. J. Eng, vol. 22, no. 2, pp. 315-322, 2006.
  • [15] C. F. Silva, J. M. Ferreira De Jesus, “A Model of a Battery Energy Storage System for Power Systems Stability Studies," pp. 1-8.
  • [16] S. Hussain Basha, P. Venkatesh, “Control of Solar Photovoltaic ( Pv ) Power Generation in Grid-Connected and Islanded Microgrids," Int. J. Eng. Reseaerch Gen. Sci., vol. 3, no. 3, pp. 121-141, 2015.
  • [17] S. Essaghir, M.Benchagra, N. El Barbri, “Power factor control of a photovoltaic system connected to grid under load variation," in International Conference on Electrical and Information Technologies (ICEIT), 2017.
  • [18] S. Essaghir, M.Benchagra and N. El Barbri, “Comparison between PI and PR Current Controllers of a Grid- Connected Photovoltaic System Under Load Variation," IJPEDS, vol. 9,N°3.
  • [19] O. Tremblay, Louis-A. Dessaint, “Experimental validation of a battery dynamic model for EV applications," World Electric Vehicle Journal, vol. 3, no. 2, pp. 289-298, 2009.
  • [20] M. Vojtek, M. Kolcun, Z. Čonka, and M. Mikita, “Cooperation of a Photovoltaic Power Plant With a Battery Energy Storage System," Power Electr. Eng., vol. 33, pp. 35-39, 2016.
  • [21] Y. Xu et al., “Instantaneous Active and Nonactive Power Control of Distributed Energy Resources with a Current Limiter," Energy Conversion Congress and Exposition, 2010, pp. 3855-3861.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8e3263e2-c327-4fc3-995d-42835e2ecc5c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.