PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Per Sub-band Tone Reservation Scheme for Universal Filtered Multi-Carrier Signal

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Fifth generation (5G) applications like Internet of Things (IoT), Enhanced Mobile Broadband (eMBB), Cognitive Radios (CR), Vehicle to Vehicle (V2V) and Machine to Machine (M2M) communication put new demands on the network in terms of low latency, ultra-reliable communication and efficiency when transmitting very small bursts. One new contender that makes its appearance recently is the Universal Filtered Multi- Carrier (UFMC). UFMC is a potential candidate to meet the requirements of 5G upcoming applications. This related waveform encounters the peak-to-average power ratio (PAPR) issue arising from the usage of multi-carrier transmission. In this investigation, two PAPR reduction techniques, called Per Subband Tone Reservation (PSTR) scheme to alleviate PAPR in UFMC systems are suggested. The first one is a pre-filtering PSTR scheme that uses the least squares approximation (LSA) algorithm to calculate the optimization factor(μ) and the second one is a post-filtering method. The concept of this proposal lies on the use of peaks reductions Tone to carry the correctional signal that reduces the high peaks of each sub-band individually. To shed light on UFMC as a potential waveform for 5G upcoming application, a comparison with OFDM modulation is done.
Słowa kluczowe
Rocznik
Strony
545--552
Opis fizyczny
Bibliogr. 29 poz., rys., tab., wykr.
Twórcy
  • Sup’Com, University of Carthage, Tunisia
  • Sup’Com, University of Carthage, Tunisia
Bibliografia
  • [1] J. Navarro-Ortiz, P. Romero-Diaz, S. Sendra, P. Ameigeiras, J. J. Ramos-Munoz, and J. M. Lopez-Soler, “A survey on 5g usage scenarios and traffic models,” IEEE Communications Surveys Tutorials, vol. 22, no. 2, pp. 905-929, 2020. [Online]. Available: https://doi.org/10.1109/COMST.2020.2971781
  • [2] S. Chen, J. Hu, Y. Shi, Y. Peng, J. Fang, R. Zhao, and L. Zhao, “Vehicle-to-everything (v2x) services supported by lte-based systems and 5g,” IEEE Communications Standards Magazine, vol. 1, no. 2, pp. 70-76, 2017. [Online]. Available: https://doi.org/10.1109/MCOMSTD.2017.1700015
  • [3] G. Premsankar, M. Francesco, and T. Taleb, “Edge computing for the internet of things: A case study,” IEEE Internet of Things Journal, vol. PP, pp. 1-1, 02 2018. [Online]. Available: https://doi.org/10.1109/JIOT.2018.2805263
  • [4] M. Series, “Imt vision-framework and overall objectives of the future development of imt for 2020 and beyond,” R. ITU, Ed., 2015.
  • [5] Z. E. Ankarali, B. Peköz, and H. Arslan, “Flexible radio access beyond 5g: A future projection on waveform, numerology, and frame design principles,” IEEE Access, vol. 5, pp. 18 295-18 309, 2017. [Online]. Available: https://doi.org/10.1109/ACCESS.2017.2684783
  • [6] Y. Medjahdi, S. Traverso, R. Gerzaguet, H. Shaïek, R. Zayani, D. Demmer, R. Zakaria, J.-B. Doré, M. Ben Mabrouk, D. Le Ruyet, Y. Louët, and D. Roviras, “On the road to 5g: Comparative study of physical layer in mtc context,” IEEE Access, vol. 5, pp. 26 556-26 581, 2017. [Online]. Available: https://doi.org/10.1109/ACCESS.2017.2774002
  • [7] B. Farhang-Boroujeny and H. Moradi, “Ofdm inspired waveforms for 5g,” IEEE Communications Surveys Tutorials, vol. 18, no. 4, pp. 2474-2492, 2016. [Online]. Available: https://doi.org/10.1109/COMST.2016.2565566
  • [8] X. Cheng, Y. He, B. Ge, and C. He, “A filtered ofdm using fir filter based on window function method,” in 2016 IEEE 83rd Vehicular Technology Conference (VTC Spring), 2016, pp. 1-5. [Online]. Available: https://doi.org/10.1109/VTCSpring.2016.7504065
  • [9] F. Schaich and T. Wild, “Waveform contenders for 5g-ofdm vs. fbmc vs. ufmc,” in 2014 6th International Symposium on Communications, Control and Signal Processing (ISCCSP), 2014, pp. 457-460. [Online]. Available: https://doi.org/10.1109/ISCCSP.2014.6877912
  • [10] C. Nie and Y. Bai, “Papr reduction with amplitude clipping and subband filter in filtered-ofdm system”, booktitle=”5g for future wireless networks,” K. Long, V. C. Leung, H. Zhang, Z. Feng, Y. Li, and Z. Zhang, Eds. Cham: Springer International Publishing, 2018, pp. 220-227.
  • [11] L. Zhang, A. Ijaz, P. Xiao, M. M. Molu, and R. Tafazolli, “Filtered ofdm systems, algorithms, and performance analysis for 5g and beyond,” IEEE Transactions on Communications, vol. 66, no. 3, pp. 1205-1218, 2018. [Online]. Available: https://doi.org/10.1109/TCOMM.2017.2771242
  • [12] A. Bedoui and M. Et-tolba, “A comparative analysis of filter bank multicarrier (fbmc) as 5g multiplexing technique,” in 2017 International Conference on Wireless Networks and Mobile Communications (WINCOM), 2017, pp. 1-7. [Online]. Available: https://doi.org/10.1109/WINCOM.2017.8238200
  • [13] G. Fettweis, M. Krondorf, and S. Bittner, “Gfdm - generalized frequency division multiplexing,” in VTC Spring 2009 - IEEE 69th Vehicular Technology Conference, 2009, pp. 1-4. [Online]. Available: https://doi.org/10.1109/VETECS.2009.5073571
  • [14] V. Vakilian, T. Wild, F. Schaich, S. ten Brink, and J.-F. Frigon, “Universal-filtered multi-carrier technique for wireless systems beyond lte,” in 2013 IEEE Globecom Workshops (GC Wkshps), 2013, pp. 223-228. [Online]. Available: https://doi.org/10.1109/GLOCOMW.2013.6824990
  • [15] M. Mukherjee, L. Shu, V. Kumar, P. Kumar, and R. Matam, “Reduced out-of-band radiation-based filter optimization for ufmc systems in 5g,” in 2015 International Wireless Communications and Mobile Computing Conference (IWCMC), 2015, pp. 1150-1155. [Online]. Available: https://doi.org/10.1109/IWCMC.2015.7289245
  • [16] I. Baig, U. Farooq, N. U. Hasan, M. Zghaibeh, A. Sajid, and U. M. Rana, “A low papr dht precoding based ufmc scheme for 5g communication systems,” in 2019 6th International Conference on Control, Decision and Information Technologies (CoDIT), 2019, pp. 425-428. [Online]. Available: https://doi.org/10.1109/CoDIT.2019.8820502
  • [17] R. S. Yarrabothu and U. R. Nelakuditi, “Optimization of out-of-band emission using kaiser-bessel filter for ufmc in 5g cellular communications,” China Communications, vol. 16, no. 8, pp. 15-23, 2019. [Online]. Available: https://doi.org/10.23919/JCC.2019.08.002
  • [18] N. Taşpinar and Şimşir, “Papr reduction based on partial transmit sequence technique in ufmc waveform,” in 2019 14th Iberian Conference on Information Systems and Technologies (CISTI), 2019, pp. 1-6. [Online]. Available: https://doi.org/10.23919/CISTI.2019.8760726
  • [19] Y. Zhang, K. Liu, and Y. Liu, “A novel papr reduction algorithm based on slm technique in ufmc systems,” in 2018 IEEE/CIC International Conference on Communications in China (ICCC Workshops), 2018, pp. 178-183. [Online]. Available: https://doi.org/10.1109/ICCChinaW.2018.8674491
  • [20] W. Rong, J. Cai, and X. Yu, “Low-complexity pts papr reduction scheme for ufmc systems,” Cluster Computing, vol. 20, no. 4, pp. 3427-3440, 2017.
  • [21] A. F. lmutairi, M. Al-Gharabally, and A. Krishna, “Performance analysis of hybrid peak to average power ratio reduction techniques in 5g ufmc systems,” IEEE Access, vol. 7, pp. 80 651-80 660, 2019. [Online]. Available: https://doi.org/10.1109/ACCESS.2019.2916937
  • [22] K. Liu, Y. Ge, and Y. Liu, “An efficient piecewise nonlinear companding transform for papr reduction in ufmc systems,” in 2019 IEEE/CIC International Conference on Communications in China (ICCC), 2019, pp. 730-734. [Online]. Available: https://doi.org/10.1109/ICCChina.2019.8855924
  • [23] S. A. Fathy, M. N. A. Ibrahim, S. S. Elagooz, and H. M. El-Hennawy, “Efficient slm technique for papr reduction in ufmc systems,” in 2019 36th National Radio Science Conference (NRSC), 2019, pp. 118-125. [Online]. Available: https://doi.org/10.1109/NRSC.2019.8734569
  • [24] S. A. Fathy, M. Ibrahim, S. El-Agooz, and H. El-Hennawy, “Low-complexity slm papr reduction approach for ufmc systems,” IEEE Access, vol. 8, pp. 68 021-68 029, 2020. [Online]. Available: https://doi.org/10.1109/ACCESS.2020.2982646
  • [25] R. Nissel, S. Schwarz, and M. Rupp, “Filter bank multicarrier modulation schemes for future mobile communications,” IEEE Journal on Selected Areas in Communications, vol. 35, no. 8, pp. 1768-1782, 2017. [Online]. Available: https://doi.org/10.1109/JSAC.2017.2710022
  • [26] F. Harris, “On the use of windows for harmonic analysis with the discrete fourier transform,” Proceedings of the IEEE, vol. 66, no. 1, pp. 51-83, 1978. [Online]. Available: https://doi.org/10.1109/PROC.1978.10837
  • [27] H. S. Hussein, A. S. Mubarak, O. A. Omer, U. S.Mohamed, and M. Salah, “Sparse index ofdm modulation for iot communications,” IEEE Access, vol. 8, pp. 170 044-170 056, 2020. [Online]. Available: https: //doi.org/10.1109/ACCESS.2020.3024157
  • [28] J. Tellado and J. Cioffi, “Efficient algorithms for reducing par in multicarrier systems,” in Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252), 1998, pp. 191-. [Online]. Available: https://doi.org/10.1109/ISIT.1998.708789
  • [29] --, “Peak-to-average power ratio reduction for multi-carrier communication systems,” 1999.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8e2de60e-3533-4c69-9bb9-7712bf11306a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.