PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Selective crystallization of gamma glycine for NLO applications using magnesium sulfate (MgSO4) as an additive

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Crystallization of γ-glycine in the presence of selected concentration (9 g/mL) of tailor-made additive magnesium sulfate heptahydrate salt (MgSO4·7H2O) has been studied at ambient temperature by adopting slow solvent evaporation procedure. The morphological modifications of glycine crystals grown from pure aqueous solutions of glycine and from glycine solutions containing magnesium species in the amount of 0.1 g/mL to 16 g/mL have been investigated thoroughly. The crystalline nature and phase identification of the crystalline material were confirmed by X-ray powder diffraction and SXRD studies. NMR studies revealed the information about the molecular conformation in solution, phase changes, functional groups and chemical environment. FT-IR spectra revealed distinct difference between α and γ-glycine polymorphs in the region around 880 cm−1 to 930 cm−1. The grown γ-glycine crystal had a lower cut-off value at 200 nm and the bandgap value evaluated from the Tauc plot was found to be 5.83 eV. The marked differences between α and γ-polymorphs of glycine were also revealed by DSC thermograms. The mechanical strength of the γ-glycine crystal was studied with the help of Vickers microhardness instrument. Kurtz-powder NLO study proved the generation of second harmonics (i.e. green light emission) in the grown γ-glycine crystal and its efficiency was calculated as 1.44 times better than that of the reference material potassium dihydrogen phosphate.
Wydawca
Rocznik
Strony
265--279
Opis fizyczny
Bibliogr. 41 poz., rys., tab.
Twórcy
  • Department of Physics, Govt.College of Technology, Coimbatore-641013, India
  • Department of Physics, Govt.College of Technology, Coimbatore-641013, India
Bibliografia
  • [1] Cabrera N., Vermilyea D.A., The Growth of Crystal from Solution. in:Doremus R.H., Roberts D.B.W., Turnbull (Eds.), Growth and Perfection of Crystal, Chapman & Hall London, 1958.
  • [2] Litaka Y., Acta Crystallogr., 14 (1961), 1.
  • [3] Litaka Y., Acta Crystallogr., 11 (1958), 225.
  • [4] Litaka Y., Proc. Jpn. Acad., 30 (1954), 109.
  • [5] Litaka Y., Acta Crystallogr., 13 (1960), 35.
  • [6] Sendhil. K. Poornachary., Pui Shan Chow., Reginald B.H.Tan., J. Cryst. Growth, 310 (2008), 3034.
  • [7] Sendhil. K. Poornachary., Pui Shan Chow., Reginald B.H.Tan., Cryst. Growth Des., 8 (2008), 179.
  • [8] Dawson A., Allan D.R., Belmonte S.A., Clark S.J., David W.I.F., MC Gregor P.A., Parsons S., Pulham C.R., Sawyer L., Cryst. Growth Des., 5 (2005), 1415.
  • [9] Marsh R.E., Acta Crystallogr., 11 (1958), 654.
  • [10] Boldyreva E.V., Crys. Eng., 6 (2003), 235.
  • [11] Narayan Bhat M., Dharmaprakash S.M., J. Cryst. Growth, (2002), 242.
  • [12] Narayana Moolya B., Jayarama A., Sureshkumar M.R., Dharmaprakash S.M., J.Cryst.Growth, 280 (2005), 581.
  • [13] Dillip G.R., Raghavaiah P., Mallikarjuna K., Madhukar Reddy C., Bhagavannarayana G., Ramesh Kumar V., Deva Prasad Raju B., Spectrochim. Acta Part A, 79 (2011), 1123.
  • [14] Zulifiqar Ali Ahamed S.D., Dillip G.R., Raghavaiah P., Mallikarjuna K., Deva Prasad Raju B., Arab. J. Chem., 6 (2013), 429.
  • [15] Dillip G.R., Bhagavannarayana G., Raghavaiah P., Deva Prasad Raju B., Mater. Chem. Phys., 134 (2012), 371.
  • [16] Parimaladevi R., Sekar C., Spectrochim. Acta Part A, 76 (2010), 490.
  • [17] Anbuchudar Azhagan S., Ganesan S., Optik, 11 (2012), 993.
  • [18] Anbuchudar Azhagan S., Ganesan S., Optik, 6 (2013), 526.
  • [19] Anbuchudar Azhagan S., Ganesan S., Optik, 15 (2013), 2251.
  • [20] Anbu Chudar Azhagan S., Ganesan S., Optik, 20 (2013), 4452.
  • [21] Anbu Chudar Azhagan S., Ganesan S., Optik, 23 (2013), 6456
  • [22] Anbuchudar Azhagan S., Ganesan S., IJPS, 8 (2013), 6.
  • [23] Anbu Chudar Azhagan S., Ganesan S., Arab. J. Chem., 10 (2017), S2615.
  • [24] Srinivasan K., Renuga Devi K., Anbuchudar Azhagan S., Cryst. Res. Technol., 46 (2011), 159.
  • [25] Srinivasan K., J. Cryst. Growth, 311 (2008), 156.
  • [26] Srinivasan K., Arumugam J., Opt. Mater., 30 (2007), 40
  • [27] Renuga Devi K., Srinivasan K., Cryst. Res. Technol., 50 (2015), 389.
  • [28] Balakrishnan T., Ramesh Babu R., Ramamurthi K., Spectrochim. Acta Part A, 69 (2008), 1114.
  • [29] Anbuchezhiyan M., Ponnusamy S., Singh S. P., Pal P.K., Datta P.K., Muthamizhchelvan C., Cryst. Res. Technol., 45 (2010), 497.
  • [30] Yogambal C., Ezhil Vizhi R., Rajan Babu D., Cryst. Res. Technol., 50 (2015), 22.
  • [31] Sekar C., Parimaladevi R., Spectrochim. Acta Part A, 74 (2009), 1160.
  • [32] Organic Index to the Powder Diffraction File, Joint committee of Powder Diffraction Standards, 2002.
  • [33] Guangwen HE., Venkateswarlu Bhamidi., Scott. R. Wilson., Reginald B.H.Tan., Paul J.A. Kenis., Charles F. Zukoski., Cryst. Growth Des., 6 (2006), 1746.
  • [34] Towler C.S., Davey R.J., Lancaster R.W., Price C.J., J. Am. Chem. Soc., 126 (2004), 13347.
  • [35] Li L., Lechuga-Ballesteros D., Szkudlarek B.A., Nair Rodriguez-Hornedo N., J. Colloid. Interf. Sci., 168 (1994), 8.
  • [36] Perlovich G.L., Hansen L.K., Bauer-Brandl A., J. Therm. Anal. Calorim., 66 (2001), 699.
  • [37] Silverstein R., Bassler G.C., Morrill T.C., Spectrometric Identification of Organic compounds, John Wiley & Sons, New York, 1981.
  • [38] Bruice P.Y., Organic chemistry, Pearson Education Pvt. Ltd., New Delhi, 2002.
  • [39] Onitsch E.M., Mikroskopie, 95 (1956), 2.
  • [40] Kurtz S.K., Perry T.T., J. Appl. Phys., 39 (1968), 3798.
  • [41] Ezhil Vizhi R., Yogambal C., J. Cryst. Growth, 452 (2016), 198.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8e2678d4-8f8d-4ef9-ae2a-dd41c6958ad6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.