PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Zastosowanie związków kompleksowych platyny, palladu i kobaltu w medycynie. Cz. 1

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Application of coordination compounds of platinum, palladium and cobalt in medicine. Part 1
Języki publikacji
PL
Abstrakty
EN
The complex compounds containing metal ions are a group of compounds widely used in medicine. More and more metals are also being used to create cancer drugs or to help with other very serious diseases. Anticancer drugs are a particular use of complex compounds. Many thousands of platinum(II) compounds have been synthesized in cancer therapy, but only six of them have found use in the treatment of cancer. The most popular and the most commonly used compound is cisplatin, it has become the basis for the treatment of bladder, cervical, head, esophagus and many cancers occurring in children. The mechanism of action of platinum(II) and platinum(IV) compounds against cancer cells is to inhibit DNA replication, then RNA transcription and stop the G2 phase of the cell cycle and lead to programmed cell death or apoptosis. Coordination compounds containing more than one metal ion in their composition open new possibilities in the fight against cancer. Pt-DNA connections created by compounds containing at least two metal atoms are different from those formed by cisplatin. The basic dinuclear structure allows for great flexibility in forming DNA-DNA or DNA-protein bonds. The cobalt(III) complexes began to be used to image areas of hypoxia in cancer cells. It is believed, that cobalt(III) complexes undergo bioreduction, which leads to the release of the labile cobalt(II) complex and one or more bioactive ligands. Studies on nitro-Co(III) complexes containing acetylacetone and a nitrogen mustard ligand have shown that it is a particularly effective anti-cancer drug. Due to the fact that many people have cancer new effective anti-cancer drugs with low toxicity and no side effects are still being sought.
Rocznik
Strony
797--822
Opis fizyczny
Bibliogr. 82 poz., schem.
Twórcy
autor
  • Wydział Chemii Uniwersytetu Gdańskiego, ul. Wita Stwosza 63, 80-308 Gdańsk
  • Wydział Chemii Uniwersytetu Gdańskiego, ul. Wita Stwosza 63, 80-308 Gdańsk
  • Wydział Chemii Uniwersytetu Gdańskiego, ul. Wita Stwosza 63, 80-308 Gdańsk
Bibliografia
  • [1] R. Oun, Y.E. Moussa, N.J. Wheate, Dalton Trans., 2018, 47, 6645.
  • [2] T.J. Johnstone, K. Suntharalingam, S.J. Lippard, J. Stephen, Chem. Rev., 2016, 116, 3436.
  • [3] T.C. Johnstone, G.Y. Park, S.J. Lippard, Anticancer Res., 2014, 34 (1), 471.
  • [4] E. Ulukaya, F. Ari, K. Dimas, E.I. Ikitimur, E. Guney, V.T. Yilmaz, E. J. Med. Chem., 2011, 46, 4957.
  • [5] E.Z Jahromi, A. Divsalar, A.A. Saboury, S. Khaleghizadeh, H. Mansouri-Torshizi, I. Kostova, J. Iran. Chem. Soc., 2016, 13, 967.
  • [6] B.Y.K. Law, Y. Qing Qu, S. Wing Fai Mok, H. Liu, W. Zeng, Y. Han, F. Gordillo-Martinez, W. Chan, K. Man-Chung Wong, V. Kam Wai Wong, Oncotarget, 2017, 8, 55003.
  • [7] C.R. Munteanu, K. Suntharalingam, Dalton Trans., 2015, 31.
  • [8] F. Huq, H. Tayyem, P. Beale, J. Q. Yu, J. Inorg. Biochem., 2007, 101, 30.
  • [9] C.J. Jones, J.R. Thornback, Medicinal Applications of Coordination Chemistry, Wiley, Cambridge UK, 2007.
  • [10] S.B. Halligudi, K.N. Bhatt, N.H. Khan, R.I. Kurashy, K. Venkatsubramanian, Polyhedron, 1996, 15, 2093.
  • [11] F. Ferretti, F. Ragaini, R. Lariccia, E. Gallo, S. Cenini, Organometallics, 2010, 29, 1465.
  • [12] J. Shorter, Analiza korelacyjna w chemii organicznej: Wstęp do liniowych zależności energii swobodnej, Oxford University Press, 1973.
  • [13] D.C. Ware, P.J. Brothers, G.R. Clark, Dalton Trans., 2000, 925.
  • [14] E. Reisner, V. Arion, B. Keppler, Inorg. Chim. Acta, 2008, 361, 569.
  • [15] T. Failes, C. Cullinane, C. Diakos, Chem. - Eur. J., 2007, 13, 2974.
  • [16] A. Ociepa-Kubicka E. Ociepa, Inżynieria i Ochrona Środowiska nr 2,2012, 169.
  • [17] R.A. Yokel, S.M. Lasley, D.C. Dorman, J. Toxicol. Environ. Health, Part B: Critical Rev., 2007, 9, 63.
  • [18] A. Kaczyńska, M. Zajączkowski, M. Grzybiak, Ann. Acad. Med. Gedanensis, 2015, 45, 65.
  • [19] M. Piontek, Z. Fedyczak, К. Łuszczyńska, H. Lechów, Inżynieria Środowiska Nr 35, 2014.
  • [20] X. Shen, Y. Chi, K. Xiong, Plos One, 2019, 14, 1.
  • [21] J.J. Liao, X.Y. Shen, B. Huo, K.N. Xiong, Acta Phys. Sin., 2018, 27, 169.
  • [22] X.Y. Shen, Y.K. Chi, B. Huo, T. Wu, K.N. Xiong, Fresen Environ. Bull. 2018, 26, 6824.
  • [23] J. Ciazela, M. Siepak, P. Wojtowicz, Sci. Total. Environ., 2018, 616, 996.
  • [24] W. Shin, S. Choung, W.S. Han, J. Hwang, G. Kang, Sci. Total Environ., 2018, 642, 314.
  • [25] A.H. Baghaie1, M. Fereydoni, IJEHE, 2019, 6, 11.
  • [26] M. Kolahkaj, S. Battaleblooie, H. Amanipoor, S. Modabberi, IJHE, 2017, 9, 537.
  • [27] C.U. Nkwunonwo, P.O. Odika, N. I. Onyia, Sci. World J., 2020, 1.
  • [28] N. Thonemann, M. Schumann, J. Clean. Prod., 2018, 172, 4181.
  • [29] L.-M. Cai, Q.-S. Wang, J. Luo, Sci. Total Environ., 2019, 650, 725.
  • [30] H. Ali, E. Khan, Intern. J., 2019, 25, 1353.
  • [31] B. Dash, R. Soni, R. Goel, Springer, Singapore, 2019, 179.
  • [32] C. Li, K. Zhou, W. Qin, Intern. J. 2019, 28, 380.
  • [33] G.E. Obi-Iyeke, J. Environ. Manage., 2019, 23, 443.
  • [34] D. Kondej, Bezpieczeństwo Pracy 2, 2007.
  • [35] L. Trynda-Lemiesz, U. Śliwińska-Hill, J. Oncol., 2011, 61,465.
  • [36] M. Subocz, B. Popławska, A. Bielawska, K. Bielawski, Ann. Acad. Med. Silesiensis, 2011, 65, 70.
  • [37] U. Śliwińska-Hill, M. Szumełda, J. Oncol., 2016, 66, 136.
  • [38] N. Farrell, Advances in DNA Sequence-Specific Agents, 3, 1998, 179.
  • [39] A. Annunziata, M.E. Cucciolito, R. Esposito, G. Ferraro, D.M. Monti, A. Merlino, F. Ruffo, Eur. J. Inorg. Chem., 2020, 918.
  • [40] R.G. Kenny, C.J. Marmion, Chem. Rev., 2019, 119, 1058.
  • [41] G. Ferraro, T. Marzo, M.E. Cucciolito, F. Ruffo, L. Messori, A. Merlino, Int. J. Mol. Sci. 2019, 20, 520.
  • [42] M.E. Cucciolito, F. De Luca Bossa, R. Esposito, G. Ferraro, A. Iadonisi, G. Petruk, L. Dülia, C. Romanetti, S. Traboni, A. Tuzi, D.M. Monti, A. Merlino,F. Ruffo, Inorg. Chem. Front., 2018, 5, 2921
  • [43] A. Annunziata, M.E. Cucciolito, R. Esposito, P. Imbimbo, G. Petruk, G. Ferraro, V. Pinto, A. Tuzi, D.M. Monti, A. Merlino, F. Ruffo, Dalton Trans., 2019, 48, 7794.
  • [44] I.B. Lozada, B. Huang, M. Stilgenbauer, T. Beach, Z. Qiu, Y. Zheng, David, E. Herberta, Dalton Trans., 2020, DOI: 10.1039/D0DT01275K.
  • [45] B. Englinger, C. Pirker, P. Heffeter, A. Terenzi, C.R. Kowol, B.K. Keppler, W. Berger, Chem. Rev., 2019, 119, 1519.
  • [46] A.A. Almaqwashi, W. Zhou, M.N. Naufer, I.A. Riddell, Ö.H. Yilmaz, S.J. Lippard, M.C. Williams, J. Am. Chem. Soc., 2019, 141, 1537.
  • [47] W. Zhou, M. Almeqdadi, M.E. Xifaras, I.A. Riddell, Ö.H. Yilmaz, S.J. Lippard, Chem. Commun., 2018, 54, 2788.
  • [48] R. Mondal, I.B. Lozada, R.L. Davis, J.A.G. Williams, D.E. Herbert, Inorg. Chem., 2018, 57, 4966.
  • [49] J. Zajac, V. Novohradsky, L. Markova, V. Brabec, J. Kasparkova, Angew. Chem., 2020, 59, 3329.
  • [50] K. Laws, K. Suntharalingam, ChemBioChem, 2018, 19, 2246.
  • [51] P. Kuppusamy, I. Soundharrajan, D. H. Kim, I. Hwang, K. C. Choi, Phytom., 2019, 60, 152873.
  • [52] V. Brabec, O. Hrabina, J. Kasparkova, Coord. Chem. Rev. 2017, 351, 2.
  • [53] M. Ravera, E. Gabano, M. J. McGlinchey, D. Osella, Inorg. Chim. Acta 2019, 492, 32.
  • [54] D. Gibson, J. Inorg. Biochem. 2019, 191, 77.
  • [55] L. Nagyal, A. Kumar, R. Sharma, R. Yadav, P. Chaudhary, R. Singh*, Curr. Bioact. Comp., 2020, 16, 726.
  • [56] N. Farrell, Advances in DNA Sequence Specific Agents 2, 1998, 187.
  • [57] A. Hucke, G.Y. Park, O.B. Bauer, G. Beyer, C. Koeppen, D. Zeeh, C.A. Wehe, M. Sperling, R. Schroeter, M. Kantauskaite, Y. Hagos, U. Karst, S. J. Lippard, G. Ciarimboli, Front. Chem., 2018, 6, 180.
  • [58] J.D. Braun, I.B. Lozada, C. Kolodziej, C. Burda, K.M.E. Newman, J. van Lierop, R.L. Davis, D.E. Herbert, Nat. Chem., 2019, 11, 1144.
  • [59] A.A. Almaqwashi, W. Zhou, M.N. Naufer, I.A. Riddell, Ö.H. Yilmaz, S.J. Lippard, M.C. Williams, J. Am. Chem. Soc., 2019, 141, 1537.
  • [60] W. Zhou, M. Almeqdadi, M. E. Xifaras, I. A. Riddell, Ö. H. Yilmaz, S.J. Lippard, Chem. Commun., 2018, 54, 2788.
  • [61] R. Mondal, I.B. Lozada, R.L. Davis, J.A.G. Williams, D.E. Herbert, Inorg. Chem., 2018, 57, 4966.
  • [62] P. Mandapati, P.K. Giesbrecht, R.L. Davis, D.E. Herbert, Inorg. Chem., 2017, 56, 3674.
  • [63] P. Mandapati, J.D. Braun, C. Killeen, R.L. Davis, J.A.G. Williams, D.E. Herbert, Inorg. Chem., 2019, 58, 14808.
  • [64] I.B. Lozada, T. Murray, D.E. Herbert, Polyhedron, 2019, 161, 261.
  • [65] A. S. Abu-Surrah, M. Kettunem, Curr. Med. Chem., 2006, 13, 1337.
  • [66] A. S. Abu-Surrah, H. H. Al-Sa’doni, M. Y. Abdalla, Cancer Th., 2008, 6,1.
  • [67] T. Lazarevi, A. Rilak, Z.D. Bugar, Eur. J. Med. Chem., 2017, 142, 8.
  • [68] A.R. Kapdi, I.J.S. Fairlamb, RSC, 2014, 43, 4751.
  • [69] H. Khan, A. Badshah, G. Murtaz, M. Said, Zia-ur-Rehman, Ch. Neuhausen, M. Todorova, B.J. Jean-Claude, I.S. Butler, Eur. J. Med. Chem., 2011, 46, 4071.
  • [70] B.T. Khan, J. Bhatt, K. Najmuddin, S. Shamsuddin, K. Annapoorn, J. Inorg. Biochem., 1991, 44, 55.
  • [71] O. Tokgun, D.E. Karakas, S. Tan, E.R. Karagür, B. Inal, H. Akca, F. Durap, A. Baysal, M. Aydemir, Chem. Papers, 2020, 74, 2883.
  • [72] M. Fanelli, M. Formica, V. Fusi, L. Giorgi, M. Micheloni, P. Paoli, Coord. Chem. Rev., 2016, 41, 310.
  • [73] H. Farhangian, M.E. Moghadama, A. Divsalar, A. Rahiminezhad, J. Biol. Inorg. Chem., 2017, 22, 1055.
  • [74] M. Heydari, M.E. Moghadam, A. Tarlani, H. Farhangian, Appl. Biochem. Biotechnol, 2017, 110, 182.
  • [75] T. Lazarevic, A. Rilak, Z. D. Bugarcic, Eur. J. Med. Chem., 2017, 142, 8.
  • [76] G. Onar, C. Gürses, M.O. Karataş, S. Balcioğlu, N. Akbay, N. Özdemir, B. Ateş, B. Alici, J. Organomet. Chem., 2019, 886, 48.
  • [77] M. Shabbir, Z. Akhter, A.R. Ashraf, H. Ismail, H. Anum, B. Mirza, J. Mol. Struct., 2017, 1149, 720.
  • [78] L.E. Sarto, E.P. de Gois, G.G. de Andrade, M.S. de Almeida, J.T.J. Freitas, A. de Souza Reis Júnior, L.P. Franco, С. Torres, E.T. de Almeida, C.M.C. Paiva Gouvêa, Antic. Res., 2019, 39, 6693.
  • [79] Z.X. Hu, N. Ma, J.H. Zhang, W.P. Hu, H.X. Wang, Polyhedron, 2014, 83, 30.
  • [80] R.C. Munteanu, K. Suntharalingam, Dalton Trans., 2015, 44, 13796.
  • [81] D. Dey, A. Roy, A. Ranjani, L. Gayathri, S. Chandraleka, D. Dhanasekaran, M. Akbarsha, C.-Y. Shen, H.-L. Tsai, M. Maji, N. Kole, B. Biswas, J. Chem. Sci., 2015, 127, 649.
  • [82] B.Y.K. Law, Y.Q. Qu, S.W.F. Mok, H. Liu, W. Zeng, Y. Han, F. Gordillo Martinez, W.K. Chan, K. Man-Chung Wong, V. Kam Wai Wong, Oncotarget., 2017, 8, 55003.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8e258f36-b4a1-4838-9f56-24eaa7bc5e1b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.