PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Buckling deformation of thin layer coverings of small curvatures used in aircraft construction

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents the results of experimental and numerical analysis in terms of the finite element method of plating components of aircraft load bearing structures. The subject matter of the study was composite panels with stiffeners in the form of a regular grid of oriented longitudinal elements in accordance with the directions of the principal stresses in the covering. The analysis was conducted in the buckling states of structural deformation which showed that structures with stiffeners exhibit much more favorable behavior in buckling deformation states than in laminar structures. This translates into stress distributions and their gradients, which are milder in forms of stiffened structures.
Twórcy
  • Rzeszów University of Technology, The Faculty of Mechanical Engineering and Aeronautiucs, Al. Powstańców Warszawy 8, 35-959 Rzeszów, Poland
autor
  • Rzeszów University of Technology, The Faculty of Mechanical Engineering and Aeronautiucs, Al. Powstańców Warszawy 8, 35-959 Rzeszów, Poland
  • Rzeszów University of Technology, The Faculty of Mechanical Engineering and Aeronautiucs, Al. Powstańców Warszawy 8, 35-959 Rzeszów, Poland
  • University of the West of England, Department of Engineering Design and Mathematics, Coldharbour Lane, Stoke Gifford, Bristol BS16 1QY, United Kingdom
Bibliografia
  • 1. Arborcz J, Post-buckling behavior of structures. Numerical techniques for more complicated structures. Lecture Notes In Physics 1985; 288, 83–142.
  • 2. Crisfield MA, Non-linear finite element analysis of solid and structures, J. Wiley & Sons, 1997.
  • 3. Doyle JF, Nonlinear analysis of thin-walled structures, Springer-Verlag, 2001.
  • 4. Debski H, Sadowski T, Modelling of microcracks initiation and evolution along interfaces of the WC/ Co composite by the finite element method. Computational Materials Science 2014;83, 403–411.
  • 5. Debski H, Teter A, Kubiak T: Numerical and experimental studies of compressed composite columns, Composite Structures 2014;118, 28–36.
  • 6. Dobrzański P, Czarnocki P, Lorenz Z, Shell structures – theory and application, CRC Press, 2013.
  • 7. Felippa CA, Crivelli LA, Haugen B, A survey of the core-congruential formulation for nonlinear finite element, Archive of Computer Methods in Engineering 1994.
  • 8. Huybrechts S, Tsai SW, Analysis and behavior of grid structures, Composites science and technology 1996; 56, 1001–1015.
  • 9. Kim TD, Fabrication and testing of composite isogrid stifened cylinder, Composite Structures 1999; 45, 1–6.
  • 10. Kopecki T, Numerical-experimental analysis of the post-buckling state of a multi-segment multi-member thin-walled structure subjected to torsion, Journal of theoretical and applied mechanics 2011; 49(1), 227–242
  • 11. Kopecki T, Bakunowicz J, Lis T, Post-critical deformation states of composite thin-walled aircraft load-bearing structures, Journal of Theoretical and Applied Mechacnics 2016;54(1), 195–204.
  • 12. Liang Huang, Sheikh A, Ching-Tai NG, Griffith MC, An efficient finite element model for buckling analysis of grid stiffened laminated composite plates, Composite Structures 2015; 122, 41–50.
  • 13. Lynch C. A. Finite element study of the post buckling behavior of a typical aircraft fuselage panel, PhD Thesis, Queen’s University Belfast, 2000.
  • 14. Riks E, An incremental approach to the solution of snapping and buckling problems, International Journal of Solid and Structures 1979; 15, 529–551.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8e23f05a-8bc3-433b-baae-2abccff2986b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.