PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The use of multi-criteria analysis for selection of technology for a household WWTP compatible with sustainable development

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Zastosowanie analizy wielokryterialnej do wyboru rozwiązania technologicznego przydomowej oczyszczalni ścieków zgodnego z ideą zrównoważonego rozwoju
Języki publikacji
EN
Abstrakty
EN
This paper presents the use of multi-criteria analysis as a tool that helps choosing an adequate technology for a household wastewater treatment plant. In the process of selection the criteria of sustainable development were taken into account. Five municipal mechanical-biological treatment plants were chosen for the comparative multi-criteria analysis. Different treatment technologies, such as sand filter, activated sludge, trickling filter, a hybrid system - activated sludge/trickling filter and a hybrid constructed wetland system VF-HF type (vertical and horizontal flow) were taken into account. The plants’ capacities were 1 m3∙d-1 (PE=8) and they all meet the environmental regulations. Additionally, a solution with a drainage system was included into the analysis. On the basis of multi-criteria analysis it was found that the preferred wastewater treatment technologies, consistent with the principles of sustainable development, were a sand filter and a hybrid constructed wetland type VF-HF. A drainage system was chosen as the best solution due to the economic criteria, however, taking into consideration the primary (ecological) criterion, employment of such systems on a larger scale disagree with the principles of sustainable development. It was found that activated sludge is the least favourable technology. The analysis showed that this technology is not compatible with the principles of sustainable development, due to a lack of proper technological stability and low reliability.
PL
W pracy przedstawiono sposób wykorzystania analizy wielokryterialnej jako narzędzia pomocniczego do wyboru właściwego rozwiązania technologicznego przydomowej oczyszczalni ścieków. Przy wyborze uwzględniano kryteria zgodne z zasadami zrównoważonego rozwoju. Do porównawczej analizy wielokryterialnej wybrano 5 wariantów przydomowych, mechaniczno-biologicznych oczyszczalni ścieków. Porównywano systemy z filtrem piaskowym, z osadem czynnym, ze złożem biologicznym zraszanym, system hybrydowy - osad czynny ze złożem biologicznym oraz hybrydowy system hydrofi towy typu VF-HF (z pionowym i poziomym przepływem ścieków). Analizowano rozwiązania o przepustowości 1 m3∙d-1 (Równoważna Liczba Mieszkańców - RLM = 8), spełniające wymagania przepisów ochrony środowiska. Dodatkowo także rozwiązanie z zastosowaniem drenażu rozsączającego. Na podstawie analizy wielokryterialnej stwierdzono, że najbardziej korzystnymi rozwiązaniami technologicznymi, zgodnymi z zasadami zrównoważonego rozwoju, są systemy z filtrem piaskowym i hybrydowe systemy hydrofi towe typu VF-HF. Przy znacznej przewadze kryteriów ekonomicznych, jako najbardziej korzystne rozwiązanie wybrany został system z drenażem rozsączający, jednak biorąc pod uwagę kryterium nadrzędne (ekologiczne), aby zachować zasadę zrównoważonego rozwoju, należałoby wykluczyć możliwość stosowania tych rozwiązań na większą skalę. Stwierdzono, że najbardziej niekorzystnym jest rozwiązanie technologiczne z wykorzystaniem osadu czynnego. Wykonana analiza wykazała, że stosowanie tej technologii jest niezgodne z ideą zrównoważonego rozwoju. Jest to spowodowane brakiem odpowiedniej stabilności technologicznej i niewielką niezawodnością działania.
Rocznik
Strony
76--82
Opis fizyczny
Bibliogr. 43 poz., tab.
Twórcy
  • University of Life Sciences in Lublin, Poland Faculty of Production Engineering Department of Environmental Engineering and Geodesy
autor
  • Cracow University of Technology, Poland Faculty of Environmental Engineering Institute of Water Supply and Environmental Protection
  • Cracow University of Technology, Poland Faculty of Environmental Engineering Institute of Water Supply and Environmental Protection
autor
  • University of Life Science in Lublin, Poland Faculty of Agrobioengineering Institute of Soil Science, Engineering and Environmental Engineering
  • University of Life Science in Lublin, Poland Faculty of Agrobioengineering Institute of Soil Science, Engineering and Environmental Engineering
autor
  • Krosno State College, Poland Department of Civil Engineering
Bibliografia
  • [1]. Aragonés-Beltrána, P., Mendoza-Rocab, J. A., Bes-Piáa, A., García-Melón, M. & Parra-Ruiz, E. (2009). Application of multi-criteria decision analysis to jar-test results for chemicals selection in the physical-chemical treatment of textile wastewater, Journal of Hazardous Materials, 164, pp. 288-295.
  • [2]. Balkema, A., Weijers, S. & Lambert, F. (1998). On methodologies for comparison of wastewater treatment systems with respect to sustainability, Conference WIMEK Options for Closed Water Systems, Wageningen, Netherlands 1998.
  • [3]. Baryła, P. (2013). Challenges for the adoption of the sustainable development perspective in polish evaluation studies, Problems of Sustainable Development, 8 (1), pp. 139-148.
  • [4]. Błażejewski, R. (1995). Individual sanitation systems and groundwater, Gospodarka Wodna, 10, pp. 238-240. (in Polish)
  • [5]. Błażejewski, R. (2005). The current status of domestic sewage treatment plants and prospects of their development, Wodociągi - Kanalizacja, 1, 2005. (in Polish)
  • [6]. Bugajski, P. & Ślizowski, R. (2003). Container domestic treatment plants as a complementary element of the disposal plant in the municipality Pałecznica, Zeszyty Naukowe Akademii Rolniczej w Krakowie s. Inżynieria Środowiska, 24, pp. 371-379. (in Polish)
  • [7]. Bugajski, P. & Wałęga, A. (2010). Reliability assessment of the household sewage treatment plant, Infrastruktura i Ekologia Terenów Wiejskich, PAN Oddział w Krakowie, 02/2010: pp. 45-53. (in Polish)
  • [8]. Brechet, T. & Tulkens, H. (2009). Beyond BAT: Selecting optimal combinations of available techniques, with an example from the limestone industry, Journal of Environmental Management, 90, pp. 1790-1801.
  • [9]. Chmielowski, K. (2009). Impact of the hydraulic loading of filter bed on the sewage treatment efficiency in vertical flow sand filters, Polish Journal of Environmental Studies, Series of monographs, 4, pp. 17-22.
  • [10]. Chmielowski, K. (2013). The effectiveness of domestic sewage treatment in a household sewage treatment plant with a modified gravel and sand filter, Infrastruktura i Ekologia Terenów Wiejskich, PAN Oddział w Krakowie, Komisja Technicznej Infrastruktury Wsi, Rozprawa Habilitacyjna, 224. (in Polish)
  • [11]. Gajewska, M. & Obarska-Pempkowiak, H. (2009). 20 years of experience of hybrid constructed wetlands exploitation in Poland, Rocznik Ochrona Środowiska, 11, pp. 875-888. (in Polish)
  • [12]. Generowicz, A., Kulczycka, J., Kowalski, Z. & Banach, M. (2011a). Assessment of waste management technology using BATNEEC options, technology quality method and multi-criteria analysis, Journal of Environmental Management, 92, 4, pp. 1314-1320.
  • [13]. Generowicz, A. Kulczycka, J., Kowalski, Z. & Banach, M. (2011b). Assessment of technological solutions of municipal waste management using technology quality indicators and multicriteria analysis, Przemysł Chemiczny, 5, pp. 747-752.
  • [14]. Generowicz, A., Kowalski, Z., Makara, A. & Banach, M. (2012). The application of multi-criteria analysis in the management of waste in Cracow, Poland, Waste Management, 32, pp. 349-351.
  • [15]. Georgopoulou, E., Hontou, V., Gakis, N., Sarafidis, Y., Mirasgedis, S., Lalas, D.P., Loukatos, A., Gargoulas Mentzis, A., Economidis, D.,Triantafilopoulos, T. & Korizi, K. (2008). BEAsT: a decision-support tool for assessing the environmental benefits and the economic attractiveness of best available techniques in industry, Journal of Cleaner Production, 16, 3, pp. 359-373.
  • [16]. GUS, (2014). Environmental Protection, Informacje i opracowania statystyczne, Warszawa, 574. (in Polish)
  • [17]. Heidrich, Z., Kalenik, M., Podedworna, J. & Stańko, G. (2008). Rural sanitation, Wydawnictwo Seidel-Przywecki, 374. (in Polish)
  • [18]. Jóźwiakowski, K. (2003). Analysis of wastewater treatment efficiency in household plants in rural areas for example chosen objects in the Lublin Province, Acta Scientiarum Polonorum, ser. Formatio Circumiectus, 2, 1, pp. 3-14. (in Polish)
  • [19]. Jóźwiakowski, K. (2012a). Studies on the efficiency of sewage treatment in choosen constructed wetland systems, Infrastruktura i Ekologia Terenów Wiejskich, PAN Oddział w Krakowie, Komisja Technicznej Infrastruktury Wsi, Rozprawa habilitacyjna, 233. (in Polish)
  • [20]. Jóźwiakowski, K. (2012b). Domestic sewage treatment plants in rural areas, Inżynier budownictwa, 10, 2012, pp. 57-60. (in Polish)
  • [21]. Jóźwiakowski, K., Pytka, A., Marzec, M., Gizińska, M., Dąbek, J. Głaz, B. & Sławińska, A. (2012). Development of water and wastewater infrastructure in Lublin province in 2000-2011, Infrastruktura i Ekologia Terenów Wiejskich, PAN Oddział w Krakowie. Komisja Technicznej Infrastruktury Wsi, 3/I/2012, pp.73-86. (in Polish)
  • [22]. Jucherski, A & Walczowski, A. (2001). Filter drain. Cleaning or discharge of untreated sewage into the soil, Wiadomości Melioracyjne i Łąkarskie, 3, 390, pp. 131-132. (in Polish)
  • [23]. Korizi, K. (2008). BEAsT: a decision-support tool for assessing the environmental benefits and the economic attractiveness of best available techniques in industry, Journal of Cleaner Production, 16 (3), pp. 359-373.
  • [24]. Lundin, M., Molander, S., Morrison, G.M. (1999). A set of indicators for the assessment of temporal variations in the sustainability of sanitary systems, Water, Science and Technology, 39 (5), pp. 235-242.
  • [25]. Malarski, R. (1999). Sewage treatment plant - an alternative to hard technology, (http://www.ekofil.gdynia.pl/Oczyszczalnie_roslinne_jako_alternatywna_technologia.html (15.02.2015)). (in Polish)
  • [26]. Mucha, Z. (2005). Unit investment costs of small sewage treatment plants, Gaz, Woda i Technika Sanitarna, 9, 2005, pp. 23-25. (in Polish)
  • [27]. Mucha, Z. (2008). Small wastewater treatment systems - technology and equipment, conditions of use, selection and design principles and rules of operation, capital and operating costs, Zarządzanie środowiskowe - ISO 14000 pod red. A. Tabora, t. V, Awarie, chemikalia, gospodarowanie wodami, Kraków, pp. 95-190. (in Polish)
  • [28]. Mucha, Z. & Iwanejko, R. (2012). Selection of the sewage removal and treatment system for the small settlement using the AHP method, Gaz, Woda i Technika Sanitarna 10/2012. pp. 444-447. (in Polish).
  • [29]. Mucha, Z. & Mikosz, J. (2009). Rational application of small wastewater treatment plants according to sustainability criteria, Czasopismo Techniczne. Środowisko, 106, 2, pp. 91-100. (in Polish)
  • [30]. Mucha, Z., Mikosz, J. & Generowicz, A. (2012). Application of multicriteria analysis for selection of technology for small wastewater treatment plants, Czasopismo Techniczne. Środowisko, 109, 4, pp. 145-155. (in Polish)
  • [31]. Obarska-Pempkowiak, H. (2005). Constructed Wetland System - UE Requirements, Zeszyty Naukowe Wydziału Budownictwa i Inżynierii Środowiska Politechniki Koszalińskiej, 22, pp. 77-97. (in Polish)
  • [32]. Orlik, T. & Jóźwiakowski, K. (2003). The evaluation of two BATEX household wastewater treatment plants with filter drain, Inżynieria Rolnicza, 3, 45, pp. 109-119. (in Polish)
  • [33]. Paluch, J. & Pulikowski, K. (2004). Selected problems related to the construction of domestic sewage treatment plant with filter drain, Wiadomości Melioracyjne i Łąkarskie, 4, pp. 191-198. (in Polish)
  • [34]. Pawęska, K. & Kuczewski, K. (2013). The small wastewater treatment plants - hydrobotanical systems in environmental protection, Archives of Environmental Protection, 39, 1, pp. 3-16.
  • [35]. Pawłowski, A. (2008). Sustainable development - idea, philosophy, practice, Monografie Komitetu Inżynierii Środowiska PAN, 51, Lublin 2008. (in Polish)
  • [36]. Pawłowski, A., (2009). The sustainable development revolution, Problems of Sustainable Development, 4 (1), pp. 65-76.
  • [37]. Pawłowski, L. (2011). The role of environmental monitoring in the implementation of sustainable development, Rocznik Ochrona Środowiska, 13, pp. 333-346. (in Polish)
  • [38]. Prawo Budowlane z dnia 27 marca 2003 r. Dz. U. nr 80/03, poz. 718, art. 29 ustęp 1, pkt. 3. (in Polish)
  • [39]. Prawo Wodne z dnia 18 lipca 2001 r. Dz. U. nr 115/01, poz. 1229, art. nr 36, 39, 42. (in Polish)
  • [40]. Roeleveld, P.J., Klapwijk, A., Eggels, P.G., Rulkens, W.H. & Van Starkenburg, W. (1997). Sustainability of municipal wastewater treatment, Water, Science and Technology, 35, (10), pp. 221-228.
  • [41]. Regulation of the Minister of Environment on 24.07.2006. On the conditions to be met when sewage into water or soil and on substances particularly harmful to the aquatic environment, Dz. U. nr 137, poz. 984. (in Polish)
  • [42]. Tuszyńska, A., Obarska-Pempkowiak, H. & Worst, W. (2004). Efficiency of contaminants removal on hydrophyte beds with sequential vertical and horizontal wastewater flow, Rocznik Ochrona Środowiska, 6, pp. 115-129. (in Polish)
  • [43]. Tuszyńska, A. & Obarska-Pempkowiak, H. (2008). Influence of oxygenation of hydrophyte beds on effectiveness of pollutants removal, Rocznik Ochrona Środowiska, 10, pp. 413-424. (in Polish)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8e20cf89-f3d9-4e06-a879-71a2aae6bf7c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.