PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Development of an adaptive neuro-fuzzy inference system (ANFIS) model to predict sea surface temperature (SST)

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An accurate estimation of the sea surface temperature (SST) is of great importance. Therefore, the objective of this work was to develop an adaptive neuro-fuzzy inference system (ANFIS) model to predict SST in the Çanakkale Strait. The observed monthly air temperature, evaporation and precipitation data from the Çanakkale meteorological observation station were used as input data. The Takagi–Sugeno fuzzy inference system was applied. The grid partition method (ANFIS-GP) and the subtractive clustering partitioning method (ANFIS-SC) were used with Gaussian membership functions to generate the fuzzy inference system. Six performance evaluation criteria were used to evaluate the developed SST prediction models, including mean square error (MSE), root mean square error (RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE), Nash-Sutcliffe efficiency (NSE) and correlation of determination (R2). The dataset was randomly divided into training and testing datasets for the machine learning process. Training data accounted for 75% of the dataset, while 25% of the dataset was allocated for testing in ANFIS. The hybrid algorithm was selected as a training algorithm for the ANFIS. Simulation results revealed that the ANFIS-SC4 model provided a higher correlation coefficient of 0.96 between the observed and predicted SST values. The results of this study suggest that the developed ANFIS model can be applied for predicting sea surface temperature around the world.
Słowa kluczowe
Rocznik
Strony
354--373
Opis fizyczny
Bibliogr. 92 poz.
Twórcy
autor
  • Department of Fishing and Fish Processing Technology, Faculty of Marine Sciences and Technology, Çanakkale Onsekiz Mart University, Terzioglu Campus, 17020 Çanakkale, Turkey
Bibliografia
  • [1]. Akpomie, T.M., Ekanem, E.O., Adamu, M.M. & Akpomie, J.O. (2016). Computer modelling of the concentration of heavy metals in artificial borings. World Journal of Analytical Chemistry 4(1): 6-10. DOI: 10.12691/wjac-4-1-2.
  • [2]. Alizamir, M., Kim, S., Kisi, O. & Zounemat-Kermani, M. (2020). A comparative study of several machine learning based non-linear regression methods in estimating solar radiation: Case studies of the USA and Turkey regions. Energy 197: 11739. DOI: 10.1016/j.energy.2020.117239.
  • [3]. Alte, P.D. & Sadgir, P.A. (2015). Water quality prediction by using ANN. International Journal of Advance Foundation And Research In Science & Engineering (IJAFRSE) 1: 278-285.
  • [4]. Altunkaynak, A., Özger, M. & Çakmakcı, M. (2005). Fuzzy logic modeling of the dissolved oxygen fluctuations in Golden Horn. Ecological Modelling 189(3-4): 436-446. DOI: 10.1016/j.ecolmodel.2005.03.007.
  • [5]. Aqil, M., Kita, I., Yano, A. & Nishiyama, S. (2007). A comparative study of artificial neural networks and neuro-fuzzy in continuous modelling of the daily and hourly behaviour of runoff. Journal of Hydrology 337(1-2): 22-34. DOI: 10.1016/j.jhydrol.2007.01.013.
  • [6]. Areerachakul, S. (2012). Comparison of ANFIS and ANN for estimation of biochemical oxygen demand parameter in surface water. International Journal of Environmental, Chemical, Ecological, Geological and Geophysical Engineering 6(4): 168-172. DOI: scholar.waset.org/1999.6/3706.
  • [7]. Arslan, G., Kale, S. & Sönmez, A.Y. (2020). Trend analysis and forecasting of streamflow of Gökırmak River (Turkey). Oceanological and Hydrobiological Studies 49(3): 230-246. DOI: 10.1515/ohs-2020-0021.
  • [8]. Awan, J. A. & Bae, D.-H. (2016). Drought prediction over the East Asian monsoon region using the adaptive neuro-fuzzy inference system and the global sea surface temperature anomalies. International Journal of Climatology 36: 4767-4777. DOI: 10.1002/joc.4667.
  • [9]. Ay, M. & Kisi, O. (2011). Modeling of dissolved oxygen concentration using different neural network techniques in Foundation Creek, El Paso County, Colorado. Journal of Environmental Engineering 138(6): 654-662. DOI: 1943-7870.0000511.10.1061/(ASCE)EE.
  • [10]. Ay, M. & Kisi, O. (2014). Modelling of chemical oxygen demand by using ANNs, ANFIS and k-means clustering techniques. Journal of Hydrology 511: 279-289. DOI: 10.1016/j.jhydrol.2014.01.054.
  • [11]. Azad, A., Farzin, S., Kashi, H., Sanikhani, H., Karami, H. et al. (2018). Prediction of river flow using hybrid neuro-fuzzy models. Arabian Journal of Geosciences 11: 718. DOI: 10.1007/s12517-018-4079-0.
  • [12]. Bayatzadeh Fard, Z., Ghadimi, F. & Fattahi, H. (2017). Use of artificial intelligence techniques to predict distribution of heavy metals in groundwater of Lakan lead-zinc mine in Iran. Journal of Mining & Environment 8(1): 35-48. DOI: 10.22044/jme.2016.592.
  • [13]. Brown, M. & Harris, C.J. (1994). Neuro-fuzzy adaptive modelling and control. Prentice-Hall International, New York and London.
  • [14]. Cakmakci, M. (2007). Adaptive neuro-fuzzy modelling of anaerobic digestion of primary sedimentation sludge. Bioprocess and Biosystems Engineering 30: 349-357. DOI: 10.1007/s00449-007-0131-2.
  • [15]. Cengiz, T. & Akbulak, C. (2009). Application of analytical hierarchy process and geographic information systems in land-use suitability evaluation: A case study of Dümrek village (Çanakkale, Turkey). International Journal of Sustainable Development & World Ecology 16(4): 286-294. DOI: 10.1080/13504500903106634.
  • [16]. Collins, D.C., Reason, C.J.C. & Tangang, F. (2004). Predictability of Indian Ocean sea surface temperature using canonical correlation analysis. Climate Dynamics 22: 481-497. DOI: 10.1007/s00382-004-0390-4.
  • [17]. Csábrági, A., Molnár, S., Tanos, P. & Kovács, J. (2017). Application of artificial neural networks to the forecasting of dissolved oxygen content in the Hungarian section of the river Danube. Ecological Engineering 100: 63-72. DOI: 10.1016/j.ecoleng.2016.12.027.
  • [18]. Daneshmand, H., Tavousi, T., Khosravi, M. & Tavakoli, S. (2015). Modeling minimum temperature using adaptive neuro-fuzzy inference system based on spectral analysis of climate indices: A case study in Iran. Journal of the Saudi Society of Agricultural Sciences 14: 33-40. DOI: 10.1016/j.jssas.2013.06.001.
  • [19]. Ejder, T., Kale, S., Acar, S., Hisar, O. & Mutlu, F. (2016). Effects of climate change on annual streamflow of Kocabaş Stream (Çanakkale, Turkey). Journal of Scientific Research and Reports 11(4): 1-11. DOI: 10.9734/JSRR/2016/28052.
  • [20]. Ejder, T., Kale, S., Acar, S., Hisar, O. & Mutlu, F. (2016). Restricted effects of climate change on annual streamflow of Sarıçay stream (Çanakkale, Turkey). Marine Science and Technology Bulletin 5(1): 7-11.
  • [21]. Elhatip, H. & Kömür, M.A. (2008). Evaluation of water quality parameters for the Mamasin dam in Aksaray City in the central Anatolian part of Turkey by means of artificial neural networks. Environmental Geology 53(6): 1157-1164. DOI: 10.1007/s00254-007-0705-y.
  • [22]. Farokhnia, A., Morid, S. & Byun, H. (2011). Application of global SST and SLP data for drought forecasting on Tehran plain using data mining and ANFIS techniques. Theoretical and Applied Climatology 104(1-2), 71-81. DOI: 10.1007/s00704-010-0317-4.
  • [23]. Garcia-Gorriz, E. & Garcia-Sanchez, J. (2007). Prediction of sea surface temperatures in the western Mediterranean Sea by neural networks using satellite observations. Geophysical Research Letters 34: L11603. DOI: 10.1029/2007GL029888.
  • [24]. Gordon, C., Cooper, C., Senior, C.A., Banks, H., Gregory, J.M. et al. (2000). The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Climate Dynamics 16(2-3): 147-168. DOI: 10.1007/s003820050010.
  • [25]. Graf, R., Zhu, S. & Sivakumar, B. (2019). Forecasting river water temperature time series using a wavelet-neural network hybrid modelling approach. Journal of Hydrology 578: 124115. DOI: 10.1016/j.jhydrol.2019.124115.
  • [26]. He, Z.B., Wen, X.H., Liu, H. & Du, J. (2014). A comparative study of artificial neural network, adaptive neuro fuzzy inference system and support vector machine for forecasting river flow in the semiarid mountain region. Journal of Hydrology 509: 379-386. DOI: 10.1016/j.jhydrol.2013.11.054.
  • [27]. Heddam, S. (2014). Modeling hourly dissolved oxygen concentration (DO) using two different adaptive neuro-fuzzy inference systems (ANFIS): A comparative study. Environmental Monitoring and Assessment 186(1): 597-619. DOI: 10.1007/s10661-013-3402-1.
  • [28]. Heddam, S., Ptak, M. & Zhu, S. (2020). Modelling of daily lake surface water temperature from air temperature: Extremely randomized trees (ERT) versus Air2Water, MARS, M5Tree, RF and MLPNN. Journal of Hydrology 588: 125130. DOI: 10.1016/j.jhydrol.2020.125130.
  • [29]. Hisar, O., Sönmez, A.Y., Kaya, H. & Aras Hisar, Ş. (2012). Various inference systems for classification of water quality status: A case study. Marine Science and Technology Bulletin 1(1): 7-11.
  • [30]. Icaga, Y. (2007). Fuzzy evaluation of water quality classification. Ecological Indicators 7(3): 710-718. DOI: 10.1016/j.ecolind.2006.08.002.
  • [31]. Jang, J.S.R. (1993). ANFIS: Adaptive-network-based fuzzy inference systems. IEEE Transactions on Systems, Man, and Cybernetics 23(3): 665-685. DOI: 10.1109/21.256541.
  • [32]. Jang, J.S.R., Sun, C.T. & Mizutani, E. (1997). Neuro-fuzzy and soft computing: A computational approach to learning and machine intelligence. Prentice-Hall, Upper Saddle River, New Jersey.
  • [33]. Jarosz, E., Teague, W.J., Book, J.W. & Beşiktepe, Ş.T. (2012). Observations on the characteristics of the exchange flow in the Dardanelles Strait, Journal of Geophysical Research 117(C11): C11012. DOI: 10.1029/2012JC008348.
  • [34]. Kale, S., Ejder, T., Hisar, O. & Mutlu, F. (2016). Climate change impacts on streamflow of Karamenderes River (Çanakkale, Turkey). Marine Science and Technology Bulletin 5(2): 1-6.
  • [35]. Kale, S., Ejder, T., Hisar, O. & Mutlu, F. (2016). Effect of climate change on annual streamflow of Bakırçay River. Adıyaman Üniversitesi Fen Bilimleri Dergisi 6(2): 156-176.
  • [36]. Kale, S. (2017a). Climatic trends in the temperature of Çanakkale city, Turkey. Natural and Engineering Sciences 2(3): 14-27. DOI: 10.28978/nesciences.348449.
  • [37]. Kale, S. (2017b). Analysis of climatic trends in evaporation for Çanakkale (Turkey). Middle East Journal of Sciences 3(2): 69-82. DOI: 10.23884/mejs.2017.3.2.01.
  • [38]. Kale, S. & Sönmez, A.Y. (2018a). Trend analysis of mean monthly, seasonally and annual streamflow of Daday Stream in Kastamonu, Turkey. Marine Science and Technology Bulletin 7(2): 60-67. DOI: 10.33714/masteb.418234.
  • [39]. Kale, S. & Sönmez, A.Y. (2018b). Trend analysis of streamflow of Akkaya Stream (Turkey). Proceedings of the 1st International Conference on Food, Agriculture and Animal Sciences (pp. 33-45). Antalya, Turkey.
  • [40]. Kale, S., Hisar, O., Sönmez, A.Y., Mutlu, F. & Filho, W.L. (2018). An assessment of the effects of climate change on annual streamflow in rivers in Western Turkey. International Journal of Global Warming 15(2): 190-211. DOI: 10.1504/IJGW.2018.092901.
  • [41]. Kale, S. & Sönmez, A.Y. (2019a) Trend analysis for streamflow of Devrekani Stream (Turkey). Review of Hydrobiology 12(1-2): 23-37.
  • [42]. Kale, S. & Sönmez, A.Y. (2019b). Trend analysis for annual streamflow of Ilgaz Stream (Turkey). Proceedings of the 2nd International Congress on Engineering and Life Science (pp. 628-633). Kastamonu, Turkey.
  • [43]. Kale, S. & Sönmez, A.Y. (2019c). Trend analysis for annual streamflow of Araç Stream (Turkey). Proceedings of the 2nd International Congress on Engineering and Life Science (pp. 746-753) Kastamonu, Turkey.
  • [44]. Khadr, M. & Elshemy, M. (2016). Data-driven modeling for water quality prediction case study: The drains system associated with Manzala Lake, Egypt. Ain Shams Engineering Journal, 8(4): 1-9. DOI: 10.1016/j.asej.2016.08.004.
  • [45]. Kisi, O. (2005) Suspended sediment estimation using neuro-fuzzy and neural network approaches. Hydrological Sciences Journal 50(4): 683-696. DOI: 10.1623/hysj.2005.50.4.683.
  • [46]. Kisi, O., Dailr, A.H., Cimen, M. & Shiri, J. (2012). Suspended sediment modeling using genetic programming and soft computing techniques. Journal of Hydrology 450-451: 48-58. DOI: 10.1016/j.jhydrol.2012.05.031.
  • [47]. Kug, J.-S., Kang, I.-S., Lee, J.-Y. & Jhun, J.-G. (2004). A statistical approach to Indian Ocean sea surface temperature prediction using a dynamical ENSO prediction. Geophysical Research Letters 31(9): L09212. DOI: 10.1029/2003GL019209.
  • [48]. Mahongo, S.B. & Deo, M.C. (2013). Using artificial neural networks to forecast monthly and seasonal sea surface temperature anomalies in the Western Indian Ocean. International Journal of Ocean and Climate Systems 4(2): 133-150. DOI: 10.1260/1759-3131.4.2.133.
  • [49]. Mamdani, E.H. (1974). Application of fuzzy algorithms for control of simple dynamic plant. Proceedings of the Institution of Electrical Engineers 121(12): 1585-1588. DOI: 10.1049/piee.1974.0328.
  • [50]. Nash, J.E. & Sutcliffe, J.V. (1970). River flow forecasting through conceptual models part I - A discussion of principles. Journal of Hydrology 10(3): 282-290. DOI: 10.1016/0022-1694(70)90255-6.
  • [51]. Nayak, P.C., Sudheer, K.P., Rangan, D.M. & Ramasastrid, K.S. (2004). A neuro-fuzzy computing technique for modeling hydrological time series. Journal of Hydrology 291: 52-66. DOI: 10.1016/j.jhydrol.2003.12.010.
  • [52]. Neetu, Sharma, R., Basu, S., Sarkar, A. & Pal, P.K. (2011). Data-adaptive prediction of sea-surface temperature in the Arabian Sea. IEEE Geoscience and Remote Sensing Letters 8(1): 9-13. DOI: 10.1109/LGRS.2010.2050674.
  • [53]. Nobre, P. & Shukla, J. (1996). Variations of sea surface temperature, wind stress, and rainfall over the tropical Atlantic and South America. Journal of Climate 9(10): 2464-2479. DOI: 10.1175/1520-0442(1996)009<2464:VOSSTW>2.0.CO;2.
  • [54]. Ocampo-Duque, W., Ferré-Huguet, N., Domingo, J.L. & Schuhmacher, M. (2006). Assessing water quality in rivers with fuzzy inference systems: A case study. Environment International, 32(6): 733-742. DOI: 10.1016/j.envint.2006.03.009.
  • [55]. Ouala, S., Herzet, C. & Fablet, R. (2018). Sea surface temperature prediction and reconstruction using patch-level neural network representations. Proceedings of IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium, pp. 18205336. Valencia, Spain. DOI: 10.1109/IGARSS.2018.8519345.
  • [56]. Patil, K., Deo, M.C. & Ravichandran, M. (2016). Prediction of sea surface temperature by combining numerical and neural techniques. Journal of Atmospheric and Oceanic Technology 33: 1715-1726. DOI: 10.1175/JTECH-D-15-0213.1.
  • [57]. Piccolroaz, S. (2016). Prediction of lake surface temperature using the air2water model: Guidelines, challenges, and future perspectives. Advances in Oceanography and Limnology 7(1): 36-50. DOI: 10.4081/aiol.2016.5791.
  • [58]. Piccolroaz, S., Calamita, E., Majone, B., Gallice, A., Siviglia, A. et al. (2016). Prediction of river water temperature: a comparison between a new family of hybrid models and statistical approaches. Hydrological Processes 30(21): 3901-3917. DOI: 10.1002/hyp.10913.
  • [59]. Piccolroaz, S., Toffolon, M. & Majone, B. (2013). A simple lumped model to convert air temperature into surface water temperature in lakes. Hydrology and Earth System Sciences 17(8): 3323-3338. DOI: 10.5194/hess-17-3323-2013.
  • [60]. Piotrowski, A.P., Napiorkowski, J.J. & Piotrowska, A.E. (2020) Impact of deep learning-based dropout on shallow neural networks applied to stream temperature modelling. Earth-Science Reviews 201: 103076. DOI: 10.1016/j.earscirev.2019.103076.
  • [61]. Piotrowski, A.P., Napiorkowski, M.J., Napiorkowski, J.J. & Osuch, M. (2015). Comparing various artificial neural network types for water temperature prediction in rivers. Journal of Hydrology 529: 302-315. DOI: 10.1016/j.jhydrol.2015.07.044.
  • [62]. Qasaimeh, A., Abdallah, M. & Bani Hani, F. (2012). Adaptive neuro-fuzzy logic system for heavy metal sorption in aquatic environments. Journal of Water Resource and Protection 04(05): 277-284. DOI: 10.4236/jwarp.2012.45030.
  • [63]. Ranković, V., Radulović, J., Radojević, I., Ostojić, A. & Čomić, L. (2012). Prediction of dissolved oxygen in reservoirs using adaptive network-based fuzzy inference system. Journal of Hydroinformatics 14(1): 167-179. DOI: 10.2166/hydro.2011.084.
  • [64]. Samadianfard, S., Kazemi, H., Kisi, O. & Liu, W.-C. (2016). Water temperature prediction in a subtropical subalpine lake using soft computing techniques. Earth Sciences Research Journal, 20(2): D1-D11. DOI: 10.15446/esrj.v20n2.43199.
  • [65]. Sengorur, B., Dogan, E., Koklu, R. & Samandar, A. (2006) Dissolved oxygen estimation using artificial neural network for water quality control. Fresenius Environmental Bulletin 15(9): 1064-1067.
  • [66]. Shaltout, M. (2019). Recent sea surface temperature trends and future scenarios for the Red Sea. Oceanologia 61: 484-504. DOI: 10.1016/j.oceano.2019.05.002.
  • [67]. Singh, K.P., Basant, A., Malik, A. & Jain, G. (2009). Artificial neural network modeling of the river water quality - A case study. Ecological Modelling 220(6): 888-895. DOI: 10.1016/j.ecolmodel.2009.01.004.
  • [68]. Sönmez, A.Y. & Kale, S. (2020). Climate change effects on annual streamflow of Filyos River (Turkey). Journal of Water and Climate Change 11(2): 420-433. DOI: 10.2166/wcc.2018.060.
  • [69]. Sönmez, A.Y., Hasiloglu, S., Hisar, O., Aras Mehan, H.N. & Kaya, H. (2013a). Fuzzy logic evaluation of water quality classification for heavy metal pollution in Karasu Stream, Turkey. Ekoloji 22(87): 43-50. DOI: 10.5053/ekoloji.2013.876.
  • [70]. Sönmez, A.Y., Hisar, O. & Yanık, T. (2012). Determination of heavy metal pollution in Karasu River and classification of water quality. Journal of Agricultural Faculty of Atatürk University 43(1): 69-77.
  • [71]. Sönmez, A.Y., Hisar, O. & Yanık, T. (2013b). A comparative analysis of water quality assessment methods for heavy metal pollution in Karasu Stream, Turkey. Fresenius Environmental Bulletin 22(2a): 579-583.
  • [72]. Sönmez, A.Y., Kale, S., Özdemir, R.C. & Kadak, A.E. (2018). An adaptive neuro-fuzzy inference system (ANFIS) to predict of cadmium (Cd) concentrations in the Filyos River, Turkey. Turkish Journal of Fisheries and Aquatic Sciences 18(12): 1333-1343. DOI: 10.4194/1303-2712-v18_12_01.
  • [73]. Soyupak, S., Karaer, F., Gürbüz, H., Kivrak, E., Sentürk, E. et al. (2003). A neural network-based approach for calculating dissolved oxygen profiles in reservoirs. Neural Computing & Applications 12(3-4): 166-172. DOI: 10.1007/s00521-003-0378-8.
  • [74]. Takagi, T. & Sugeno, M. (1985). Fuzzy identification of systems and its applications to modeling and control. IEEE Transactions on Systems, Man, and Cybernetics 15(1): 116-132. DOI: 10.1109/TSMC.1985.6313399.
  • [75]. Talei, A., Chua, L.H.C., Quek, C. & Jansson, P.E. (2013). Runoff forecasting using a Takagi-Sugeno neuro-fuzzy model with online learning. Journal of Hydrology 488: 17-32. DOI: 10.1016/j.jhydrol.2013.02.022.
  • [76]. Terzi, Ö., Keskin, M.E. and Taylan, E.D. (2006). Estimating evaporation using ANFIS. Journal of Irrigation and Drainage Engineering 132(5): 503-207. DOI: 10.1061/(ASCE)0733-9437(2006)132:5(503).
  • [77]. Toffolon, M., Piccolroaz, S., Majone, B., Soja, A.M., Peeters, F. et al. (2014). Prediction of surface temperature in lakes with different morphology using air temperature. Limnology and Oceanography 59(6): 2185-2202. DOI: 10.4319/lo.2014.59.6.2185.
  • [78]. Wang, W.-C., Chau, K.-W., Cheng, C.-T. & Qiu, L. (2009). A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series. Journal of Hydrology 374(3-4): 294-306. DOI: 10.1016/j.jhydrol.2009.06.019.
  • [79]. Wei, L., Guan, L. & Qu, L. (2019). Prediction of sea surface temperature in the South China Sea by artificial neural networks. IEEE Geoscience and Remote Sensing Letters 17(4): 558-562. DOI: 10.1109/LGRS.2019.2926992.
  • [80]. Wei, M., Bai, B., Sung, A.H., Liu, Q., Wang, J. et al. (2007). Predicting injection profiles using ANFIS. Information Sciences 177(20): 4445-4461. DOI: 10.1016/j.ins.2007.03.021.
  • [81]. Xu, L., Li, Q., Yu, J., Wang, L., Xie, J. et al. (2020). Spatio-temporal predictions of SST time series in China’s offshore waters using a regional convolution long short-term memory (RC-LSTM) network. International Journal of Remote Sensing 41(9): 3368-3389. DOI: 10.1080/01431161.2019.1701724.
  • [82]. Xue, Y. & Leetmaa, A. (2000). Forecasts of tropical Pacific SST and sea level using a Markov model. Geophysical Research Letters 27: 2701-2704. DOI: 10.1029/1999GL011107.
  • [83]. Zadeh, L.A. (1965). Fuzzy sets. Information and Control 8(3): 338-353. DOI: 10.1016/S0019-9958(65)90241-X.
  • [84]. Zadeh, L.A. (1968). Fuzzy algorithms. Information and Control 12(2): 94-102. DOI: 10.1016/S0019-9958(68)90211-8.
  • [85]. Zadeh, L.A. (1973). Outline of a new approach to the analysis of complex systems and decision processes. IEEE Transactions on Systems, Man, and Cybernetics SMC-3(1): 28-44. DOI: 10.1109/TSMC.1973.5408575.
  • [86]. Zhang, Q., Wang, H., Dong, J., Zhong, G. & Sun, X. (2017). Prediction of sea surface temperature using long short-term memory. IEEE Geoscience and Remote Sensing Letters 14(10): 1745-1749. DOI: 10.1109/LGRS.2017.2733548.
  • [87]. Zhao, Y., Nan, J., Cui, F.-Y. & Guo, L. (2007). Water quality forecast through application of BP neural network at Yuqiao Reservoir. Journal of Zhejiang University-SCIENCE A 8(9), 1482-1487. DOI: 10.1631/jzus.2007.A1482.
  • [88]. Zhu, S. & Heddam, S. (2019). Modelling of maximum daily water temperature for streams: Optimally pruned extreme learning machine (OPELM) versus radial basis function neural networks (RBFNN). Environmental Processes 6: 789-804. DOI: 10.1007/s40710-019-00385-8.
  • [89]. Zhu, S., Heddam, S., Nyarko, E.K., Hadzima-Nyarko, M., Piccolroaz, S. et al. (2019a). Modeling daily water temperature for rivers: Comparison between adaptive neuro-fuzzy inference systems and artificial neural networks models. Environmental Science and Pollution Research 26(1): 402-420. DOI: 10.1007/s11356-018-3650-2.
  • [90]. Zhu, S., Heddam, S., Wu, S. Dai, J. & Jia, B. (2019b). Extreme learning machine-based prediction of daily water temperature for rivers. Environmental Earth Sciences 78: 202. DOI: 10.1007/s12665-019-8202-7.
  • [91]. Zhu, S., Nyarko, E.K., Hadzima-Nyarko, M., Heddam, S. & Wu, S. (2019c). Assessing the performance of a suite of machine learning models for daily river water temperature prediction. PeerJ. 7: e7065. DOI: 10.7717/peerj.7065.
  • [92]. Zhu, S., Ptak, M., Yaseen, Z.M., Dai, J. & Sivakumar, B. (2020). Forecasting surface water temperature in lakes: a comparison of approaches. Journal of Hydrology 585: 124809. DOI: 10.1016/j.jhydrol.2020.124809.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8e1fa29e-82ca-48e3-9749-3716eb5613ad
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.