Tytuł artykułu
Autorzy
Identyfikatory
Warianty tytułu
Zagregowane kryterium wyboru rozkładu czasu douszkodzenia elementów pojaz dów szynowych
Języki publikacji
Abstrakty
This paper presents an aggregate method of selecting a theoretical cumulative distribution function (CDF) for an empirical CDF. The method was intended to identify the time of reliable operation of a renewable technical object by applying three criteria based on the following statistics: the modified Kolmogorov–Smirnov (MK-S) statistic, the mean absolute deviation of the theoretical CDF from the empirical CDF, and a statistic calculated on the basis of a log-likelihood function. The values of these statistics were used to rank eleven probability distributions. The data for which calculations were made concerned failures of the driver’s cab lock recorded during five years of operation of a fleet of 45 trams. Before calculating the statistics, the empirical CDF of the examined component was determined using the Kaplan–Meier estimator, and then, using the method of Maximum Likelihood Estimation, the parameters of the analysed theoretical distributions were estimated. The theoretical distributions were then ranked according to the values obtained for each of the assumed criteria: the lower the value for a given criterion, the higher the ranking position, indicating a better fit according to that criterion. Then, based on the three rankings and on weights assigned to the individual criteria, an aggregate criterion (referred to as DESV) was implemented to select the best-fitting probability distribution. The method assumes that the lowest DESV value corresponds to the best-fitting theoretical distribution. In the case of the examined component, this was found to be the generalised gamma distribution. It is shown that if the final decision is based on the aggregate criterion, which takes into account the three criteria for goodness of fit, the reliability of the estimation of the time-to-failure distribution increases, and thus mistakes resulting from the use of only one of the criteria can be avoided.
W pracy przedstawiono zagregowaną metodę doboru dystrybuant hipotetycznych do dystrybuanty empirycznej. Metoda miała na celu identyfikację czasu niezawodnej pracy odnawialnego obiektu technicznego poprzez zastosowanie trzech kryteriów, w których użyto następujących statystyk: zmodyfikowanej statystyki Kołmogorowa-Smirnowa (MK-S), statystyki średniego odchylenia bezwzględnego dystrybuanty hipotetycznej od empirycznej oraz statystyki obliczanej na podstawie zlogarytmowanej funkcji wiarygodności. Wartości tych statystyk posłużyły do rangowania jedenastu rozkładów prawdopodobieństwa. Dane dla których dokonano obliczeń dotyczyły uszkodzeń zamka kabiny motorniczego jakie odnotowano w ciągu pięciu lat użytkowania floty 45 tramwajów. Przed obliczeniem statystyk wyznaczono dystrybuantę empiryczną badanego elementu przy pomocy estymatora KaplanaMeiera, a następnie przy użyciu metody największej wiarygodności oszacowano parametry uwzględnionych w badaniach rozkładów hipotetycznych. Po wyznaczaniu parametrów nastąpiło rangowanie rozkładów hipotetycznych według wartości otrzymanych dla każdego z przyjętych kryteriów, im mniejsza wartość dla danego kryterium tym wyższa pozycja w rankingu, świadcząca o lepszej jakości dopasowania według danego kryterium. Po ustaleniu rankingu według kryteriów zgodności, każdemu z kryteriów zgodności dopasowania dystrybuant modelowych do empirycznej nadano wagi. Następnie na podstawie uzyskanych trzech rankingów oraz wag nadanych poszczególnym kryteriom zgodności wyznaczana jest zagregowana miara zgodności (oznaczona DESV), która służy do wyznaczania najlepszego rozkładu prawdopodobieństwa. W prezentowanej metodzie przyjęto, że najmniejsza wartość DESV wyznacza najlepiej dopasowany rozkład hipotetyczny. W przypadku badanego elementu rozkładem tym okazał się uogólniony rozkład gamma. Pokazano, że na podstawie zagregowanego kryterium uwzględniającego trzy statystyki zgodności dopasowania zwiększa się wiarygodność estymacji rozkładu czasu pracy do uszkodzenia, unikając tym samym błędów jakie można popełnić uzależniając się tylko od jednej z nich.
Czasopismo
Rocznik
Tom
Strony
102--111
Opis fizyczny
Bibliogr. 39 poz., rys., tab.
Twórcy
autor
- Poznan University of Technology, ul. Piotrowo 3A, 60-965 Poznań, Poland
autor
- Poznan University of Technology, ul. Piotrowo 3A, 60-965 Poznań, Poland
Bibliografia
- 1. Abernethy R B. The New Weibull Handbook: Reliability & Statistical Analysis for Predicting Life, Safety, Survivability, Risk, Cost, and Warranty Claims (Fifth ed.), Florida, 2010.
- 2. Andrzejczak K, Selech J. Flexible Prediction of the Vehicle Component Damage. Transport Means 2018: Proceedings of the 22nd International Scientific Conference, Trakai, Lithuania, Part II, 2018; 987-990.
- 3. Andrzejczak K, Selech J. Generalised Gamma Distribution in the Corrective Maintenance Prediction of Homogeneous Vehicles. In: Kabashkin I, Yatskiv (Jackiva) I, Prentkovskis O. (eds) Reliability and Statistics in Transportation and Communication. RelStat 2018. Lecture Notes in Networks and Systems. Springer, Cham 2018; 68.
- 4. Andrzejczak K, Selech J. Investigating the trends of average costs of corrective maintenance of public transport vehicles. Journal of KONBiN 2017; 41: 207-226, https://doi.org/10.1515/jok-2017-0011.
- 5. Andrzejczak K, Selech J. Quantile analysis of the operating costs of the public transport fleet. Transport Problems, 2017; 12 (3): 103-111.
- 6. Andrzejczak K. Statystyka elementarna z wykorzystaniem systemu Statgraphics [Elementary statistics using the Statgraphics system], Wyd. Politechniki Poznańskiej, Poznań 1997.
- 7. Bartnik G, Pieniak D, Niewczas A M, Marciniak A. Probabilistic model for flexural strength of dental composites used in modelling reliability of the "tooth-dental composite" system. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2016; 18 (1): 136-141, https://doi.org/10.17531/ein.2016.1.18.
- 8. Bavuso S J. Aerospace Applications of Weibull and Monte Carlo Simulation with Importance Sampling, IEEE, Annual Reliability and Maintainability Symposium, Proc. 1997.
- 9. Dolce J E. Analytical Fleet Maintenance Management, SAE International, SUA, 1994.
- 10. Elmahdy E E. Modelling Reliability Data with Finite Weibull or Lognormal Mixture Distributions. Appl. Math. Inf. Sci. 2017; 11 (9), 1081-1089, https://doi.org/10.18576/amis/110414.
- 11. Ferreira L A, Silva J L. Parameter estimation for Weibull distribution with right censored data using EM algorithm. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2017; 19 (2): 310-315, https://doi.org/10.17531/ein.2017.2.20.
- 12. Fuc P, Rymaniak L, Ziolkowski A. The correlation of distribution of PM number emitted under actual conditions of operation by PC and HDV vehicles, WIT Transactions on Ecology and the Environment. WIT Press, 2013; 174: 207.
- 13. Gill A. Optimisation of the technical object maintenance system taking account of risk analysis results. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2017; 19 (3): 420-431, https://doi.org/10.17531/ein.2017.3.13.
- 14. Hajkowski J, Popielarski P, Sika R. Prediction of HPDC casting properties made of AlSi9Cu3 alloy, Advances in Manufacturing, SPRINGER, Manufacturing 2017, 621-631, https://doi.org/10.1007/978-3-319-68619-6_59.
- 15. Hirose H. Bias Correction for the Maximum Likelihood Estimation in Two-parameter Weibull Distribution, IEEE Transactions on Dielectrics and Electrical Insulation 1999; 6: 1, https://doi.org/10.1109/94.752011.
- 16. https://www.reliasoft.com/Weibull [Accessed 2018].
- 17. Johnson R A, Miller I, Freund J E. Probability and Statistics for Engineers, eighth ed., Pearson Education Limited Co., UK, 2014.
- 18. Kececioglu D. Reliability & Life Testing Handbook, PrenticeHall, Inc., Englewood Cliffs, New Jersey, 1993; 1.
- 19. Lawless J F. Statistical Models and Methods for Lifetime Data, second ed., Wiley, 2002, https://doi.org/10.1002/9781118033005.
- 20. Lawless J F. Statistical Models And Methods for Lifetime Data, John Wiley & Sons, Inc., New York, 1982.
- 21. Lee E T, Wang J W. Statistical Methods for Survival. Data Analysis, John Wiley & Sons Inc; (3rd Edition), 2003, https://doi.org/10.1002/0471458546.
- 22. Legát V, Mošna F, Aleš Z, Jurča V. Preventive maintenance models - higher operational reliability. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2017; 19 (1): 134-141, https://doi.org/10.17531/ein.2017.1.19.
- 23. Liu J, Song B, and Zhang Y. Competing failure model for mechanical system with multiple functional failures. Advances in Mechanical Engineering 2018, 10(5) 1-16, https://doi.org/10.1177/1687814018773155.
- 24. Loska A. Exploitation assessment of selected technical objects using taxonomic methods, Eksploatacja i Niezawodnosc − Maintenance and Reliability 2013; 15, 1.
- 25. Młynarski S, Pilch R, Smolnik M, Szybka J. Methodology of network systems reliability assessment on the example of urban transport. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2018; 20 (2): 278-283, https://doi.org/10.17531/ein.2018.2.14.
- 26. Młyńczak M. Analiza danych eksploatacyjnych w badaniach niezawodności obiektów technicznych, Zeszyty Naukowe WSOWL, 2001; 1 (159).
- 27. Nelson W. Applied Life Data Analysis, John Wiley & Sons, Inc., New York, 1982, https://doi.org/10.1002/0471725234.
- 28. Perz P, Malujda I, Wilczyński D, Tarkowski P. Methods of controlling a hybrid positioning system using LabVIEW, 21th Scientific Polish-Slovak Conference "Machine Modeling and Simulations 2016", Procedia Engineering 2017; 177, 339-346, https://doi.org/10.1016/j.proeng.2017.02.235.
- 29. Pieniak D, Niewczas A M, Niewczas A, Bieniaś J. Analysis of Survival Probability and Reliability of the Tooth-composite Filling System. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2011; 2(50): 25-34.
- 30. ReliaSoft Corporation, Life Data (Weibull) Analysis Reference, ReliaSoft Publishing Tucson, AZ, 2008.
- 31. Research Project "Increase in the efficiency of functioning of public means of transport as a result of implementation of LCC and RAMS concepts in accordance with the IRIS standards based on integrated information technology system" financed by Polish National Center for Research and Development. No. PBS3/B6/30/2015.
- 32. Rojek I, Kujawińska A, Hamrol A, Rogalewicz M. Artificial neural networks as a means for making process control charts user friendly. In: Burduk A., Mazurkiewicz D. (eds.), Intelligent Systems in Production Engineering and Maintenance - ISPEM 2017, Advances in Intelligent Systems and Computing, Springer, 637, 168-178, 2017, https://doi.org/10.1007/978-3-319-64465-3_17.
- 33. Selech J. Prognozowanie kosztów obsługiwania korekcyjnego pojazdów transportu masowego [Forecasting costs of corrective maintenance of mass transport vehicles]. Wydawnictwo Naukowe ITeE-PIB, Radom 2019, ISBN 978-83-7789-557-3.
- 34. Świderski A, Jóźwiak A, Jachimowski R. Operational quality measures of vehicles applied for the transport services evaluation using artificial neural networks, Eksploatacja i Niezawodnosc - Maintenance and Reliability 2018; 20 (2), 292-299, https://doi.org/10.17531/ein.2018.2.16.
- 35. Trojanowska J, Kolinski A, Galusik D, Varela M L R, Machado J. A methodology of improvement of manufacturing productivity through increasing operational efficiency of the production process. In: Hamrol A., Ciszak O., Legutko S., Jurczyk M. (eds) Advances in Manufacturing. Lecture Notes in Mechanical Engineering. Springer, Cham, 2018; 23-32, https://doi.org/10.1007/978-3-319-68619-6_3.
- 36. Waluś K J. Driver's Strategy and Braking Distance in Winter, Transport Means 2017: Proceedings of the 21st International Scientific Conference, Juodkrante, Lithuania. 2017; Part 2, 505 - 509, ISSN 1822-296 X, e-ISSN 2351-7034.
- 37. Wojtkowiak D, Talaśka K, Malujda I, Domek G. Estimation of the perforation force for polymer composite conveyor belts taking into consideration the shape of the piercing punch. The International Journal of Advanced Manufacturing Technology 2018, https://doi.org/10.1007/s00170-018-2381-3.
- 38. Ziółkowski J, Borucka A, Model Markowa w logistycznym zarządzaniu przedsiębiorstwem [Markov model in logistic management of enterprise], Journal of Konbin 2016; 2 (38), https://doi.org/10.1515/jok-2016-0027.
- 39. Żurek J, Ziółkowski J, Borucka A. Application of Markov processes to the method for analysis of combat vehicle operation in the aspect of their availability and readiness, Safety and Reliability - Theory and Applications - Čepin & Briš (Eds)©, Taylor & Francis Group, London, 2017; 2343-2352.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8e1b9632-b782-4299-a826-7c8346d99726