Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Lignin was used to study the mechanical properties and thermal stability of polymers. The lignin was blended with three kinds of polymers, and the addition of lignin was 0.5 wt%. Under the condition of thermal oxidation, the thermal stability of lignin/polymer samples varies with the structure of lignin. The effects of lignin on the mechanical properties and thermal stability of the polymers were investigated by oxidation induction time (OIT), rheological properties, mechanical properties and differential scanning calorimetry (DSC). The results show that the effect of lignin on the thermal properties of polymer samples is 2~3oC. It can be inferred that lignin can effectively improve the interaction between polymer molecular chain segments, and improve the crystallization rate and rigidity to a certain extent, so it can be seen that lignin has good compatibility and thermal stability.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
10--16
Opis fizyczny
Bibliogr. 31 poz., rys., tab., wykr.
Twórcy
autor
- Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education and Xinjiang Uyghur Autonomous Region, College of Chemistry and Chemical Engineering, Xinjiang University, Urumqi, 830046, China
autor
- Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education and Xinjiang Uyghur Autonomous Region, College of Chemistry and Chemical Engineering, Xinjiang University, Urumqi, 830046, China
autor
- Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education and Xinjiang Uyghur Autonomous Region, College of Chemistry and Chemical Engineering, Xinjiang University, Urumqi, 830046, China
autor
- Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education and Xinjiang Uyghur Autonomous Region, College of Chemistry and Chemical Engineering, Xinjiang University, Urumqi, 830046, China
autor
- Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education and Xinjiang Uyghur Autonomous Region, College of Chemistry and Chemical Engineering, Xinjiang University, Urumqi, 830046, China
autor
- Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education and Xinjiang Uyghur Autonomous Region, College of Chemistry and Chemical Engineering, Xinjiang University, Urumqi, 830046, China
Bibliografia
- 1. Nur Hanis Abd Latif, Afi dah Abdul Rahim & Nicolas Brosse (2019). The structural characterization and antioxidant properties of oil palm fronds lignin incorporated with p-hydroxyacetophenone. Int. J. Biol. Macromol. 130, 947-957. DOI: 10.1016/j.ijbiomac.2019.03.032
- 2. Pouteau, C., Dole, P., Cathala, B., Averous, L. & Boquillon, N. (2003). Antioxidant properties of lignin in polypropylene. Polym. Degrad. Stability 81(1), 9–18. DOI: 10.1016/S0141-3910(03)00057-0.
- 3. Muhammad, N., Man, Z., Bustam, M.A., Mutalib, M.I.A. & Rafiq, S. (2013). Investigations of novel nitrile-based ionic liquids as pre-treatment solvent for extraction of lignin from bamboo biomass. J. Ind. Engin. Chem. 19(1). DOI: 10.1016/j.jiec.2012.08.003.
- 4. Pan, X., Kadla, J.F., Ehara, K., Gilkes, N. & Saddler, J.N.(2006). Organosolv Ethanol Lignin from Hybrid Poplar as a Radical Scavenger:? Relationship between Lignin Structure, Extraction Conditions, and Antioxidant Activity. J. Agric. Food chem. 54(16), 5806–5813. DOI: 10.1021/jf0605392.
- 5. Pu, Y., Jiang, N. & Ragauskas, A.J. (2007). Ionic Liquid as a Green Solvent for Lignin. J. Wood Chem. & Technol. 27(1), p. 23–33. DOI: 10.1080/02773810701282330.
- 6. Kumar, P., Barrett, D.M., Delwiche, M.J. & Stroeve, P. (2009). Methods for Pretreatment of Lignocellulosic Biomass for Efficient Hydrolysis and Biofuel Production. Ind. & Engin. Chem. Res. 48(8), 3713–3729. DOI: 10.1021/ie801542g.
- 7. Cotana, F., Cavalaglio, G., Nicolini, A., Gelosia, M., Coccia, V., Petrozzi, A. & Brinchi, L. (2014). Lignin as Coproduct of Second Generation Bioethanol Production from Ligno-cellulosic Biomass. Energy Procedia 45, 52–60. DOI: 10.1016/j.egypro.2014.01.007.
- 8. Tagami, A., Gioia, C., Lauberts, M., Budnyak, T., Moriana, R., Lindström, M.E., Sevastyanova, O. (2019). Solvent fractionation of softwood and hardwood kraft lignins for more efficient uses: Compositional, structural, thermal, antioxidant and adsorption properties. Ind. Crops Prod. 129, 123–134. DOI: 10.1016/j.indcrop.2018.11.067.
- 9. YáEz-S, M., Matsuhiro, B., Nuez, C., Pan, S., Hubbell, C.A., Sannigrahi, P. & Ragauskas, A.J. (2014). Physicochemical characterization of ethanol organosolv lignin (EOL) from Eucalyptus globulus: Effect of extraction conditions on the molecular structure. Polym. Degrad. Stab. 110, 184–194. DOI: 10.1016/j.polymdegradstab.2014.08.026.
- 10. Wang, G. & Chen, H. (2016). Enhanced lignin extraction process from steam exploded corn stalk. Separ. Purific. Technol. 157, 93–101. DOI: 10.1016/j.seppur.2015.11.036.
- 11. Gadioli, R., Morais, J.A., Waldman, W.R. & Paoli, M.A.D. (2014). The role of lignin in polypropylene composites with semi-bleached cellulose fibers: Mechanical properties and its activity as antioxidant. Polym. Degrad. Stab. 108 (oct.), 23–34. DOI: 10.1016/j.polymdegradstab.2014.06.005.
- 12. Gregorova, A., Cibulkova, Z., Kosikova, B. & Simon, P. (2005). Stabilization effect of lignin in polypropylene and recycled polypropylene. Polym. Degrad. Stability 89 (3), 553–558. DOI: 10.1016/j.polymdegradstab.2005.02.007.
- 13. Li, Z., Zhang, J., Qin, L. & Ge, Y. (2018). Enhancing antioxidant performance of lignin by enzymatic treatment with laccase. ACS Sustainable Chem. Eng. 6(2). DOI: 10.1021/acssuschemeng.7b04070
- 14. Ye, D., Kong, J., Gu, S., Zhou, Y. & Zhang, X. (2017). Selective aminolysis of acetylated lignin: Toward simultaneously improving thermal-oxidative stability and maintaining mechanical properties of polypropylene. Internat. J. Biolog. Macromol. 108, 775–781. DOI: 10.1016/j.ijbiomac.2017.10.168
- 15. Morandim-Giannetti, A.A., Agnelli, J.A.M., Lan?as, B.Z., Magnabosco, R., Casarin, S.A. & Bettini, S.H.P. (2012). Lignin as additive in polypropylene/coir composites: Thermal, mechanical and morphological properties. Carbohydrate Polymers 87 (4), 2563–2568. DOI: 10.1016/j.carbpol.2011.11.041.
- 16. Pang, Y., Wang, S., Qiu, X., Luo, Y., Lou, H., Huang, J. (2017). Preparation of Lignin/Sodium Dodecyl Sulfate Composite Nanoparticles and Their Application in Pickering Emulsion Template-Based Microencapsulation. J. Agric. Food Chem. 65(50), 11011–11019. DOI: 10.1021/acs.jafc.7b03784.
- 17. Crouvisier-Urion, K., Bodart, P.R., Winckler, P., Raya, J., Gougeon, R.D., Cayot, P., Domenek, S., Debeaufort, F. & Karbowiak, T. (2016). Bio-based composite films from chitosan and lignin: antioxidant activity related to structure and moisture. ACS Sustainable Chem. Eng. DOI: 10.1021/acssuschemeng.6b00956.
- 18. Pouteau, C., Cathala, B., Dole, P., Kurek, B. & Monties, B. (2005). Structural modifi cation of Kraft lignin after acid treatment: characterisation of the apolar extracts and influence on the antioxidant properties in polypropylene. Ind. Crops Products 21(1), 101–108. DOI: 10.1016/j.indcrop.2004.01.003.
- 19. Kai, D., Ren, W., Tian, L., Chee, P.L., Liu, Y., Ramakrishna, S. & Loh, X.J. (2016). Engineering poly(lactide)-lignin nanofibers with antioxidant activity for biomedical application. ACS Sustainable Chem. Eng. 4(10), 5268–5276. DOI: 10.1021/acssuschemeng.6b00478.
- 20. Chen, F., Liu, W., Seyed Shahabadi, S.I., Xu, J., Lu, X. (2016). Sheet-Like Lignin Particles as Multifunctional Fillers in Polypropylene. ACS Sustainable Chem. Eng. 4(9) 4997–5004. DOI: 10.1021/acssuschemeng.6b01369.
- 21. Sadeghifar, H. & Argyropoulos, D.S. (2015). Correlations of the Antioxidant Properties of Softwood Kraft Lignin Fractions with the Thermal Stability of Its Blends with Polyethylene. ACS Sustainable Chem. Eng. 3(2), 349–356. DOI: 10.1021/sc500756n
- 22. Li, M.-F., Sun, S.-N., Xu, F. & Sun, R.-C. (2012). Microwave-assisted organic acid extraction of lignin from bamboo: Structure and antioxidant activity investigation. Food Chem. 134(3), 1392–1398. DOI: 10.1016/j.foodchem.2012.03.037.
- 23. Ugartondo, V., Mitjans, M. & Vinardell, M.P. (2008). Comparative antioxidant and cytotoxic effects of lignins from different sources. Biores. Technol. 99(14), 6683–6687. DOI: 10.1016/j.biortech.2007.11.038.
- 24. Shuai, Z., Lu, L., Bo, W., Feng, X. & Sun, R. (2012). Microwave-enhanced extraction of lignin from birch in formic acid: Structural characterization and antioxidant activity study. Process Biochem. 47(12), 1799–1806. DOI: 10.1016/j.procbio.2012.06.006.
- 25. An, L., Wang, G., Jia, H., Liu, C., Sui, W. & Si, C. (2017). Fractionation of enzymatic hydrolysis lignin by sequential extraction for enhancing antioxidant performance. Internat. J. Biolog. Macromolec. 99, 674–681. DOI: 10.1016/j.ijbiomac.2017.03.015.
- 26. Ahuja, D., Kaushik, A. & Singh, M. (2017). Simultaneous Extraction of Lignin and Cellulose Nanofibrils from waste jute bags using One Pot Pre-treatment. Internat. J. Biolog. Macromol. 107 A: 1294–1301. DOI: 10.1016/j.ijbiomac.2017.09.107.
- 27. Watkins, D., Nuruddin, M., Hosur, M., Tcherbi-Narteh, A. & Jeelani, S. (2015). Extraction and characterization of lignin from different biomass resources. J. Mater. Res. Technol. 4(1), 26–32. DOI: 10.1016/j.jmrt.2014.10.009.
- 28. Avelino, F., Teixeira da Silva, K., de Souza Filho, M. d. S.M., Mazzetto, S.E. & Lomonaco, D. (2018). Microwave-assisted organosolv extraction of coconut shell lignin by Brønsted and Lewis acids catalysts. J. Cleaner Prod. 189, 785–796. DOI: 10.1016/j.jclepro.2018.04.126.
- 29. Natividade, L.F., Reinoldo, S.F., Elaine, W., Oliveira, B.R.L. d., Edna, P. & Stival, B.P.R. (2018). Thermal Evaluation by DSC and Tensile Strength of Extrudated Blends from Polyethylene Terephthalate and Kraft Lignin. Waste & Biomass Valorization. 11, 367–373. DOI: 10.1007/s12649-018-0367-x.
- 30. Pinkert, A., Goeke, D.F., Marsh, K.N. & Pang, S. (2011). Extracting wood lignin without dissolving or degrading cellulose: investigations on the use of food additive-derived ionic liquids. Green Chemistry, 13, 3124–3136. DOI: 10.1039/C1GC15671C.
- 31. Gonç Alves, F.A., Ruiz, H.A., Silvino dos Santos, E., Teixeira, J.A. & de Macedo, G.R. (2016). Bioethanol production by Saccharomyces cerevisiae, Pichia stipitis and Zymomonas mobilis from delignified coconut fi bre mature and lignin extraction according to biorefinery concept. Renewable Energy 94, 353–365. DOI: 10.1016/j.renene.2016.03.045.
Uwagi
This work was supported by the Innovation Team Project of Anhui Academy of Agricultural Sciences (2020YL052).
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8e156be4-a912-421a-a3a0-a91c91920a2c