PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A regression orthogonal biomechanical analysis of internal fixation for femoral shaft fracture

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
To find the relationships between internal fixation parameters and biomechanical indexes with least number of runs, a regression orthogonal approach is proposed to establish surrogate models of different biomechanical indexes. Firstly, a simplified model of transverse femoral shaft fracture is built, and varieties of geometric sizes for plates and screws configurations are combined based on orthogonal array. Next, the biomechanical indexes of different combinations are calculated through finite element analysis (FEA). Furthermore, surrogate models are developed with the aid of regression orthogonal analysis. Finally, with comparison of biomechanical indexes obtained from the surrogate models and FEA results, highly coincident results validate the surrogate models. The number of combinations is greatly reduced compared with that arranged by comprehensive regression analysis. The surrogate models show acceptable results for predicating biomechanical indexes, whose relative deviation is less than 9%. Moreover, the results obtained by the surrogate models suggest that working length and thickness of the plate are the significant parameters on the maximum plate stress and maximum intra-fragmentary movement respectively, which complies with previous studies. The regression orthogonal method presented in this study can greatly reduce the number of experimental runs for investigating the biomechanics of internal fixation for femoral shaft fracture. The method can also be applied to other scenarios of fractures or even the other biomedical fields to provide a comprehensive insight into biomedical relationships with least number of trials.
Twórcy
autor
  • College of Mechanical and Electrical Engineering, Hohai University, Changzhou, China
autor
  • College of Mechanical and Electrical Engineering, Hohai University, Changzhou 213022, China
  • College of Mechanical and Electrical Engineering, Hohai University, Changzhou, China
autor
  • College of Mechanical and Electrical Engineering, Hohai University, Changzhou, China
  • College of Mechanical and Electrical Engineering, Hohai University, Changzhou, China; Changzhou Orthmed Medical Instrument Co., Ltd., Changzhou, China
Bibliografia
  • [1] Marc EB, Morris RP, Lindsey RW, Gugala Z. Biomechanical evaluation of dual plate configurations for femoral shaft fracture fixation. BioMed Res Int 2019;(1)5958631.
  • [2] Wang W, Zheng X, Sun Z. Comparison of efficacy between internal fixation of minimally invasive elastic stable intramedullary nail and plate in the treatment of pediatric femoral shaft fracture. Pak J Med Sci 2019;35(5):1417–21.
  • [3] Daniel A, Herman J, Carlos P, Madden K, Sprague S, Mammen T, et al. Fracture table vs. lateral positioning for intramedullary fixation of femur fractures (The FLiP Study): a protocol for a pilot randomized controlled trial. Peer J Preprints 2019;7:e27875v2.
  • [4] Eliezer EN, Haonga BT, Morshed S, Shearer DW. Predictors of reoperation for adult femoral shaft fractures managed operatively in a sub-Saharan country. J Bone Joint Surg 2017;99(5):388–95.
  • [5] Kim JW, Oh JK, Byun YS, Shon OJ, Park JH, Keun H, et al. Incidence of avascular necrosis of the femoral head after intramedullary nailing of femoral shaft fractures: a multicenter retrospective analysis of 542 cases. Medicine 2016;95(5):e2728.
  • [6] Hudson I, Mauch K, Schuurman M, Padela MT, Gheraibeh P, Vaidya R, et al. Effect of inherent tibial asymmetry on leg length discrepancy measurements after intramedullary nailing of comminuted femoral shaft fractures. SICOT-J 2019;5(1):1–6.
  • [7] Lee SH, Hong JY, Bae JH, Park JW, Park JH. Factors related to leg length discrepancy after flexible intramedullary nail fixation in pediatric lower-extremity fractures. J Pediat Orthopaed B 2015;24(3):246–50.
  • [8] Smith WR, Ziran BH, Anglen JO, Stahel FS. Locking plates: tips and tricks. J Bone Joint Surg Am 2007;89(10):2298–307.
  • [9] Macleod AR, Pankaj P. Pre-operative planning for fracture fixation using locking plates: device configuration and other considerations. Injury 2018;49:S12–8.
  • [10] Hao Z, Jiantao L, Jianfeng Z, Li L, Hao M, Wang K, et al. Finite element analysis of different double-plate angles in the treatment of the femoral shaft nonunion with no cortical support opposite the primary lateral plate. Biomed Res Int 2018;20183267107.
  • [11] Chandra G, Pandey A, Pandey S. Design of a biodegradable plate for femoral shaft fracture fixation. Med Eng Phys 2020;81:86–96.
  • [12] Zhao M, Zhou J, Yu Z, Chen Q, Chen J, Yang J, et al. A newly designed assembly locking compression plate to treat comminuted fractures of the femoral shaft: a biomechanical study. J Mech Med Biol 2019;19(6):950059.
  • [13] Kirthana S, Nagamallika JVL, Nizamuddin MK. A FEA on assembled fractured human femur bone with and without HA coated prosthetic plate material. Mater Today: Proc 2020;22:2890–8.
  • [14] Izzawati B, Daud R, Rojan A, Majid MSA, Najwa MN, Zain NAM, et al. The effect of bone healing condition on the stress of screw fixation in orthotropic femur bone for fracture stabilization. Mater Today: Proc 2019;16:2160–9.
  • [15] Giordano V, Santos ALGD, Belangero WD, Pires RES, Labronici PJ, Koch HA. Mind the gap between the fracture line and the length of the working area: a 2-D finite element analysis using an extramedullary fixation model. Revista Brasilra De Ortopedia 2018;53(1):88–93.
  • [16] Sheng W, Ji A, Fang R, He G, Chen C. Finite element- and design of experiment-derived optimization of screw configurations and a locking plate for internal fixation system. Computat Math Methods Med 2019;20195636528.
  • [17] Field JR, Törnkvist H, Hearn TC, Sumner-Smith G, Woodside TD. The influence of screw omission on construction stiffness and bone surface strain in the application of bone plates to cadaveric bone. Injury 1999;30(9):591–8.
  • [18] Sepehri B, Taheri E, Ganji R. Biomechanical analysis of diversified screw arrangement on 11 holes locking compression plate considering time-varying properties of callus. Biocybern Biomed Eng 2014;34(4):220–9.
  • [19] Lee CH, Shih KS, Hsu CC, Cho T. Simulation-based particle swarm optimization and mechanical validation of screw position and number for the fixation stability of a femoral locking compression plate. Med Eng Phys 2014;36(1):57–64.
  • [20] Avery CM, Bujtár P, Simonovics J, Dezsi T, Varadi K, Sandor GKB, et al. A finite element analysis of bone plates available for prophylactic internal fixation of the radial osteo-cutaneous donor site using the sheep tibia model. Med Eng Phys 2013;35(10):1421–30.
  • [21] Biswas JK, Sahu TP, Rana M, Roy S, Karmakar SK, Majumder S, et al. Design factors of lumbar pedicle screws under bending load: a finite element analysis. Biocybern Biomed Eng 2019;39(1):52–6.
  • [22] Teimortashlu E, Dehestani M, Jalal M. Application of Taguchi method for compressive strength optimization of tertiary blended self-compacting mortar. Constr Build Mater 2018;190:1182–91.
  • [23] Jia QE, Han D, Qiu A, Zhu H, Deng Y, Chen J, et al. Orthogonal experimental design of liquid-cooling structure on the cooling effect of a liquid-cooled battery thermal management system. Appl Thermal Eng 2018;132:508–20.
  • [24] Chong AY, Doyle BJ, Jansen S, Ponosh S, Cisonni J, Sun Z. Blood flow velocity prediction in aorto-iliac stent grafts using computational fluid dynamics and Taguchi method. Comp Biol Med 2017;84:246–53.
  • [25] Lin CL, Yu JH, Liu HL, Lin CH, Lin YS. Evaluation of contributions of orthodontic mini-screw design factors based on FE analysis and the Taguchi method. J Biomech 2010;43(11):2174–81.
  • [26] Yu KF, Sun XY, Li SY, Cai L, Zhang P, Kang Y, et al. Application of quadratic regression orthogonal design to develop a composite inoculum for promoting lignocellulose degradation during green waste composting. Waste Manage 2018;79:443–53.
  • [27] Cao LH, Lin AQ, Zhang Y, Lin W, Li Y. Optimal design of flow guide in exhaust hood based on quadratic regression orthogonal methodology. J Mech Eng 2016;52(14):157–64 [in Chinese].
  • [28] Massin P, Geais L, Astoin E, Simondi M, Lavaste F. The anatomic basis for the concept of lateralized femoral stems. J Arthroplasty 2000;15(1):93–101.
  • [29] Fouda N, Mostafa R, Saker A. Numerical study of stress shielding reduction at fractured bone using metallic and composite bone-plate models. Ain Shams Eng J 2019;10:481–8.
  • [30] Kim HJ, Kim SH, Chang SH. Finite element analysis using interfragmentary strain theory for the fracture healing process to which composite bone plates are applied. Compos Struct 2011;93(11):2953–62.
  • [31] Byrne DP, Lacroix D, Prendergast PJ. Simulation of fracture healing in the tibia: mechano-regulation of cell activity using a lattice modeling approach. J Orthop Res 2011;29 (10):1496–503.
  • [32] Märdian S, Schaser KD, Duda GN, Heyland M. Working length of locking plates determines interfragmentary movement in distal femur fractures under physiological loading. Clin Biomech 2015;30(4):391–6.
  • [33] Zhang KZ, Wu BH, Xu C, Deng GR, Ling Q, Li TQ. Effects of screw number in dynamic compression plates on the stability of plate and screw structure. J Clin Rehabil Tis Eng Res 2009;13(43):8454–7.
  • [34] Sheng W, Ji AM, Chen CS. Finite element analysis of screw layout of locking plate for treating femoral shaft fracture. Chin J Med Instru 2017;41(3):196–9 (In Chinese).
  • [35] Johnston SA, Lancaster RL, Hubbard RP, Probst CW. A biomechanical comparison of 7-hole 3.5 mm broad and 5- hole 4.5 mm narrow dynamic compression plates. Vet Surg 1991;20(4):235–9.
  • [36] Stoffel K, Dieter U, Stachowiak G, Gachter A, Kuster MS. Biomechanical testing of the LCP – how can stability in locked internal fixators be controlled? Injury – Int J Care Injured 2003;34(Suppl – S2):11–9.
  • [37] Hoffmann MF, Jones CB, Sietsema D, Tornetta P, Koenig S. Clinical outcomes of locked plating of distal femoral fractures in a retrospective cohort. J Orthop Surg Res 2013;8 (1):43–9.
  • [38] Hu YY, Hu CR. Experiment design and data processing. Peking: Chemistry Industry Press; 2008. p. 180–90 [in Chinese].
  • [39] Zhang YK, Wei HW, Lin KP, Chen WC, Tsai CL, Lin KJ. Biomechanical effect of the configuration of screw hole style on locking plate fixation in proximal humerus fracture with a simulated gap: a finite element analysis. Injury – Int J Care Injured 2016;47(6):1191–5.
  • [40] Moazen M, Jones AC, Leonidou A, Jin Z, Wilcox RK, Tsiridis E. Rigid versus flexible plate fixation for peri-prosthetic femoral fracture – computer modelling of a clinical case. Med Eng Phys 2012;34(8):1041–50.
  • [41] Nassiri M, Macdonald B, Byrne JM. Computational modelling of long bone fractures fixed with locking plates – how can the risk of implant failure be reduced? J Orth 2013;10(1):29–37.
  • [42] Duda GN, Mandruzzato F, Heller M, Kassi JP, Khodadadyan C, Haas NP. Mechanical conditions in the internal stabilization of proximal tibial defects. Clin Biomech 2002;17(1):64–72.
  • [43] Oh JK, Sahu D, Ahn YH, Lee SJ, Tsutsumi S, Hwang JH, et al. Effect of fracture gap on stability of compression plate fixation: a finite element study. J Orth Res 2010;28(4):462–7.
  • [44] Testa G, Vescio A, Aloj DC, Papotto G, Ferrarotto L, Masse A, et al. Definitive treatment of femoral shaft fractures: comparison between anterograde intramedullary nailing and monoaxial external fixation. J Clin Med 2019;8 (1119):1–8.
  • [45] Xie H, Xie L, Wang J, Chen C, Zhang C, Zheng W. Intramedullary versus extramedullary fixation for the treatment of subtrochanteric fracture: a systematic review and meta-analysis. Int J Surg 2019;63:43–57.
  • [46] Gonsalves JJW. A comparative study of locking plate by MIPO versus closed interlocking intramedullary nail in extra-articular distal tibia fractures. Int J Orthopaed Sci 2018;4(3):145–9.
  • [47] FAITH-Investigators, Slobogean GP, Sprague S, Bzovsky S, Heels-Ansdell D, Thabane L, et al. Fixation using alternative implants for the treatment of hip fractures (FAITH-2): design and rationale for a pilot multi-centre 2 T 2 factorial randomized controlled trial in young femoral neck fracture patients. Pilot Feasib Studies 2019;5:70–84.
  • [48] Wee H, Reid JS, Chinchilli VM, Lewis GS. Finite element-derived surrogate models of locked plate fracture fixation biomechanics. Ann Biomed Eng 2017;45(3):668–80.
  • [49] Nassiri M, Macdonald B, O'Byrne JM. Locking compression plate breakage and fracture non-union: a finite element study of three patient-specific cases. Eur J Orthopaed Surg Traumatol 2012;22(4):275–81.
  • [50] Heyland M, Duda GN, Haas NP, Trepczynski A, Dobele S, Hontzsch D, et al. Semi-rigid screws provide an auxiliary option to plate working length to control interfragmentary movement in locking plate fixation at the distal femur. Injury – Int J Care Injured 2015;46(7075):S24–32.
  • [51] Mardian S, Schaser KD, Duda GN, Heyland M. Working length of locking plates determines interfragmentary movement in distal femur fractures under physiological loading. Clin Biomech 2015;30(4):391–6.
  • [52] Chatzistergos PE, Magnissalis EA, Kourkoulis SK. A parametric study of cylindrical pedicle screw design implications on the pullout performance using an experimentally validated finite-element model. Med Eng Phys 2010;32(2):145–54.
  • [53] Kohn D, Rose C. Primary stability of interference screw fixation Influence of screw diameter and insertion torque. Am J Sports Med 1994;22(3):334–8.
  • [54] Guo J, Dong W, Yin B, Jin L, Lin Z, Hou Z, et al. Intramedullary nails with cannulated screw fixation for the treatment of unstable femoral neck fractures. J Int Med Res 2019;47(2):557–68.
  • [55] Lin TY, Yang P, Xu JL, Wei QS, Zhou GQ, He W, et al. Finite element analysis of different internal fixation methods for the treatment of Pauwels type III femoral neck fracture. Biomed Pharmacother 2019;112108658.
  • [56] Maredza M, Petrou S, Dritsaki A, Achten J, Griffin J, Lamb SE, et al. A comparison of the cost-effectiveness of intramedullary nail fixation and locking plate fixation in the treatment of adult patients with an extra-articular fracture of the distal tibia. Bone Joint J 2018;100-B(5):624–33.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8e153d48-7090-471f-98ad-ca9efb1bd419
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.