PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Thermo-Physical Properties of Selected Inconel

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Właściwości termofizyczne wybranych stopów typu Inconel
Języki publikacji
EN
Abstrakty
EN
The paper brings results of examinations of main thermo-physical properties of selected Inconel alloys, i.e. their heat diffusivity, thermal conductivity and heat capacity, measured in wide temperature range of 20–900°C. Themathematical relationships of the above properties vs. temperature were obtained for the IN 100 and IN 713C alloys. These data can be used when modelling the IN alloys solidification processes aimed at obtaining required structure and properties as well as when designing optimal work temperature parameters.
PL
Praca dotyczy badań głównych właściwości termofizycznych wybranych stopów typu Inconel, to jest dyfuzji ciepła, przewodności cieplnej i ciepła właściwego, mierzonych w szerokim zakresie temperatury 20–900°C. Matematyczne zależności ww. właściwości w funkcji temperatury dotyczą stopów IN 100 oraz IN 713C. Uzyskane w badaniach dane mogą być wykorzystane podczas numerycznego modelowania krzepnięcia i projektowania stopów typu IN o pożądanej strukturze i właściwościach a także projektowania optymalnych temperaturowych parametrów pracy.
Twórcy
  • AGH University of Science and Technology, Faculty of Foundry Engineering, 23 Reymonta Str., 30-059 Kraków, Poland
  • AGH University of Science and Technology, Faculty of Foundry Engineering, 23 Reymonta Str., 30-059 Kraków, Poland
autor
  • AGH University of Science and Technology, Faculty of Foundry Engineering, 23 Reymonta Str., 30-059 Kraków, Poland
  • AGH University of Science and Technology, Faculty of Foundry Engineering, 23 Reymonta Str., 30-059 Kraków, Poland
autor
  • AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Al. A. Mickiewicza 30, 30-059 Kraków, Poland
autor
  • Rzeszów University of Technology, Faculty of Mechanical Engineering and Aeronautics, Department of Materials Science, 2 Wincentego Pola str., 35-959 Rzeszów, Poland
Bibliografia
  • [1] ASM Ready Reference: Nickel, Cobalt and Their Alloys, ASM International, Ed. J.R. Davis, Materials Park, OH, 2000.
  • [2] T. M. Pollock, S. Tin, Nickel-Based Superalloys for Advanced Turbine Engines: Chemistry, Microstructure, and Properties, Journal of Propulsion and Power 22, 2, 361-374 (2006).
  • [3] P. Jonšta, Z. Jonšta, J. Sojka, L. Cižek, A. Hernas, Structural Characteristics of Nickel Superalloy INCONEL 713LC after Heat Treatment, Journal of Achievements in Materials and Manufacturing Engineering 21, 2, 29-32 (2007).
  • [4] L. Dobrovsky, K. Stránsky, J. Dobrovská, T. Podrábsky, K. Hrbáček, Influence of Chemical Composition on Creep Strength Parameters of the Alloy IN 713LC, Acta Metallurgica Slovaca 9, 3, 168-176 (2003).
  • [5] M. Zielinska, J. Sieniawski, M. Yavorska, M. Motyka, Influence of Chemical Composition of Nickel Based Superalloy on the Formation of Aluminide Coatings, Archives of Metallurgy and Materials 56, 193-197 (2011).
  • [6] W. K. Krajewski, J. Buras, M. Zurakowsk, A. L. Greer, Structure and Properties of Grain-refined Al-20wt.% Zn Sand Cast Alloy, Archives of Metallurgy and Materials 54, 329-334 (2009).
  • [7] W. Krajewski, Phases of Heterogeneous Nucleation in the ZnAl25 Alloy Modified by Zn-Ti and Al-Ti Master Alloys, Zeitschrift fur Metallkunde 87, 645-651 (1996).
  • [8] W. K. Krajewski, Determination of Al Site Preference in L12 TiZn3 – base Trialuminides, Materials Science Forum 508, 615-620 (2006).
  • [9] W. K. Krajewski, A. L. Greer, EBSD Study of ZnAl25 Alloy Inoculated with ZnTi4 Master Alloy, Materials Science Forum 508, 281-286 (2006).
  • [10] K. Haberl, W. K. Krajewski, P. Schumacher, Microstructural Features of the Grain-refined Sand Cast AlZn20 Alloy, Archives of Metallurgy and Materials 55, 837-841 (2010).
  • [11] T. Wróbel, J. Szajnar, Modification of Pure Al and Al-Si2 Alloy Primary Structure with use of Electromagnetic Stirring Method, Archives of Metallurgy and Materials 58, 955-958 (2013).
  • [12] P. K. Krajewski, Z. Zovko-Brodarac, W. K. Krajewski, Heat Exchange in the System Mould – Riser – Ambient. Part I: Heat exchange coefficient from mould external surface, Archives of Metallurgy and Materials 58, 847-849 (2013).
  • [13] P. K. Krajewski, A. Gradowski, W. K. Krajewski, Heat Exchange in the System Mould – Riser – Ambient. Part II: Surface heat emission from open riser to ambient, Archives of Metallurgy and Materials 58, 1149-1153 (2013)
  • [14] ASM Ready Reference: Thermal properties of metals, Ed. F. Cverna, ASM International, Ed. F. Cverna, Materials Park, OH, 2002.
  • [15] J. Dobrovska, S. Zla, F. Kavicka, B. Smetana, V. Vodarek, Study of Thermo-Physical Properties of Selected Nickel-Based Superalloys with use of DTA Method, ASME 2012 11thBiennial Conference on Engineering Systems Design and Analysis, Volume 3: Advanced Composite Materials and Processing; Robotics; Information Management and, and PLM; Design Engineering, Nantes, France, July 2-4, 101-105 (2012).
  • [16] W. K. Krajewski, J. S. Suchy, Determining Thermal Properties of Insulating Sleeves, Materials Science Forum 649, 487-491 (2010).
  • [17] M. Zielińska, M. Yavorska, M. Poręba, J. Sieniawski, Thermal properties of cast nickel based su-peralloys, Archives of Materials Science and Engineering, 44/1, 35-38 (2010).
  • [18] LFA 427 Netzsch product brochure, http://www.netzsch-thermal-analysis.com, 2013.
  • [19] P. K. Krajewski, G. Piwowarski, W. K. Krajewski, Determining Temperature Dependencies of Send Mould Thermal Properties, Material Science Forum 790, 452-457 (2014).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8e120577-dd5e-4880-a021-8603259d398b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.