PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Geospatial Assessment and Mapping of Suitable Sites for a Utility-scale Solar PV Farm

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Geospatial and multi-criteria decision-making techniques are applied to process and analyse datasets for determining suitable areas for multiple utilityscale solar photovoltaic farms in the city of Akure, Ondo State, southwestern Nigeria. Data processed include local electric power distribution system data, Shuttle Radar Topographic Mission elevation data, Landsat 8 and solar global horizontal irradiance. Multi-criteria decision-making techniques adopted are the analytical hierarchy process, reclassification, and overlay. These techniques were carried out considering criteria for siting solar photovoltaic farms. Criteria considered in this study are climate, topography, economic, environmental impact operational and technical while sub-criteria are solar global horizontal irradiance, slope, proximity and land cover. The outcome of the study shows that the study area covering a total extent of ~33,200 ha, 15%, 8%, 13% and 64% are highly suitable, suitable, moderately suitable, and unsuitable respectively for siting utility-scale solar photovoltaic farms within the study area. The study reveals the potential of multiple utility-scale solar photovoltaic farms in the study area. However, the proportions of areas suitable for solar photovoltaic farms are quite lower compared to findings from similar studies conducted in northwestern Nigeria. The study recommends solar photovoltaic sources as an alternative energy source in and around the study area.
Rocznik
Strony
79--101
Opis fizyczny
Bibliogr. 47 poz., rys., tab., wykr.
Twórcy
  • Federal University of Technology Akure, Department of Surveying and Geoinformatics, Ondo State, Nigeria
  • Federal University of Technology Akure, Department of Surveying and Geoinformatics, Ondo State, Nigeria
autor
  • Ahmadu Bello University, Department of Geomatics, Zaria, Kaduna State, Nigeria
Bibliografia
  • World Bank: Nigeria Urban Population 1960–2022. 2022.
  • National Bureau of Statistics: Nigerian Gross Domestic Product Report. 2021. https://www.nigerianstat.gov.ng/download/1241027 [access: 16.05.2022].
  • Momoh Z., Anuga J.A., Obidi A.J.: Implications of Poor Electricity Supply on Nigeria’s National Development. Humanities and Social Sciences Letters, vol. 6, no. 2, pp. 31–40, 2018. http://doi.org/10.18488/journal.73.2018.62.31.40.
  • United States Agency for International Development: Power Africa. 2020. https://www.usaid.gov/powerafrica [access: 16.05.2022].
  • Royal Society of Chemistry: Energy. 2022. https://www.rsc.org/campaigning-outreach/global-challenges/energy/ [access: 16.05.2022].
  • International Energy Agency: Solar Energy Perspectives. 2011. https://www.iea.org/reports/solar-energy-perspectives [access: 16.05.2022].
  • International Finance Corporation: Utility-Scale Solar Photovoltaic Power Plants in Partnership: Project Developer’s Guide. 2015. https://www.ifc.org/wps/wcm/connect/a1b3dbd3-983e-4ee3-a67b-cdc29ef900cb/IFC+Solar+Report_Web+_08+05.pdf?MOD=AJPERES&CVID=kZePDPG [access: 16.05.2022].
  • GobeleQ: De Aar solar power inauguration, focus on enriching communities. 2014. https://deaarsolar.co.za/de-aar-solar-power-inauguration-focus-enriching-communities/ [access: 16.05.2022].
  • Arafat A.A., Patten I.E., Zwick P.D.: Site Selection and Suitability Modeling. [in:] 2010 ESRI International Uset Conference, paper 1106, 2010.
  • Al-Ruzouq R., Shanableh A., Yilmaz A., Idris A., Mukherjee S., Khalil M., Barakat M. et al.: Dam Site Suitability Mapping and Analysis Using an Integrated GIS and Machine Learning Approach. Water (Basel), vol. 11, no. 9, 2019, 1880. https://doi.org/10.3390/w11091880.
  • Al-Garni H.Z., Awasthi A.: Solar PV Power Plants Site Selection. [in:] Yahyaoui I. (ed.), Advances in Renewable Energies and Power Technologies. Volume 1: Solar and Wind Energies, Elsevier, 2018, pp. 57–75. https://doi.org/10.1016/B978-0-12-812959-3.00002-2.
  • Mentis D., Welsch M., Nerini F.F., Broad O., Howells M., Bazilian M., Rogner H.: A GIS-based approach for electrification planning – A case study on Nigeria. Energy for Sustainable Development, vol. 29, pp. 142–150, 2015. https://doi.org/10.1016/j.esd.2015.09.007.
  • Yushchenko A., de Bono A., Chatenoux B., Kumar Patel M., Ray N.: GIS-based assessment of photovoltaic (PV) and concentrated solar power (CSP) generation potential in West Africa. Renewable and Sustainable Energy Reviews, vol. 81, 2018, pp. 2088–2103. https://doi.org/10.1016/j.rser.2017.06.021.
  • Günen M.A.: A comprehensive framework based on GIS-AHP for the installation of solar PV farms in Kahramanmaraş, Turkey. Renewable Energy, vol. 178, 2021, pp. 212–225. https://doi.org/10.1016/j.renene.2021.06.078.
  • Rios R., Duarte S.: Selection of ideal sites for the development of large-scale solar photovoltaic projects through Analytical Hierarchical Process – Geographic information systems (AHP-GIS) in Peru. Renewable and Sustainable Energy Reviews, vol. 149, 2021, 111310. https://doi.org/10.1016/j.rser.2021.111310.
  • Nebey A.H., Taye B.Z., Workineh T.G.: Site Suitability Analysis of Solar PV Power Generation in South Gondar, Amhara Region. Journal of Energy, vol. 2020, May 2020, 3519257. https://doi.org/10.1155/2020/3519257.
  • Raji S.A.: Modelling Potential Sites for Solar PV Plants in Northwest Nigeria Using Geoinformation Tools. June 2017.
  • Vagiona D., Kamilakis M.: Sustainable Site Selection for Offshore Wind Farms in the South Aegean – Greece. Sustainability, vol. 10, no. 3, 2018, 749. https://doi.org/10.3390/su10030749.
  • Spyridonidou S., Sismani G., Loukogeorgaki E., Vagiona D.G., Ulanovsky H., Madar D.: Sustainable Spatial Energy Planning of Large-Scale Wind and PV Farms in Israel: A Collaborative and Participatory Planning Approach. Energies (Basel), vol. 14, no. 3, 2021, 551. https://doi.org/10.3390/en14030551.
  • Tazi G., Jbaihi O., Ghennioui A., Merrouni A.A., Bakkali M.: Estimating the Renewable Energy Potential in Morocco: solar energy as a case study. IOP Conference Series: Earth and Environmental Science, vol. 161, 2018, 012015. https://doi.org/10.1088/1755-1315/161/1/012015.
  • Tekin S., Guner E.D., Cilek A., Unal Cilek M.: Selection of renewable energy systems sites using the MaxEnt model in the Eastern Mediterranean region in Turkey. Environmental Science and Pollution Research, vol. 28, no. 37, 2021, pp. 51405–51424. https://doi.org/10.1007/s11356-021-13760-6.
  • Katkar V.V., Sward J.A., Worsley A., Zhang K.M.: Strategic land use analysis for solar energy development in New York State. Renewable Energy, vol. 173, 2021, pp. 861–875. https://doi.org/10.1016/j.renene.2021.03.128.
  • Deveci M., Cali U., Kucuksari S., Erdogan N.: Interval type-2 fuzzy sets based multi-criteria decision-making model for offshore wind farm development in Ireland. Energy, vol. 198, 2020, 117317. https://doi.org/10.1016/j.energy.2020.117317.
  • Taye B.Z., Workineh T.G., Nebey A.H., Kefale H.A.: Rural electrification planning using Geographic Information System (GIS). Cogent Engineering, vol. 7, no. 1, 2020, 1836730. https://doi.org/10.1080/23311916.2020.1836730.
  • Nebey A.H., Taye B.Z., Workineh T.G.: GIS-Based Irrigation Dams Potential Assessment of Floating Solar PV System. Journal of Energy, vol. 2020, May 2020, 1268493. https://doi.org/10.1155/2020/1268493.
  • Habib S.M., El-Raie Emam Suliman A., al Nahry A.H., Abd El Rahman E.N.: Spatial modeling for the optimum site selection of solar photovoltaics power plant in the northwest coast of Egypt. Remote Sensing Applications: Society and Environment, vol. 18, 2020, 100313. https://doi.org/10.1016/j.rsase.2020.100313.
  • Haddad B., Díaz-Cuevas P., Ferreira P., Djebli A., Pérez J.P.: Mapping concentrated solar power site suitability in Algeria. Renewable Energy, vol. 168, 2021, pp. 838–853. https://doi.org/10.1016/j.renene.2020.12.081.
  • Mary A.-A.: Optimal techno-economic potential and site evaluation for solar PV and CSP systems in Ghana. A geospatial AHP multi-criteria approach. Renewable Energy Focus, vol. 41, 2022, pp. 216–229. https://doi.org/10.1016/j.ref.2022.03.007.
  • Goh H.H., Li C., Zhang D., Dai W., Shen Lim C., Kurniawan T.A., Chen Goh K.: Application of choosing by advantages to determine the optimal site for solar power plants. Scientific Reports, vol. 12, no. 1, 2022, 4113. https://doi.org/10.1038/s41598-022-08193-1.
  • Alami Merrouni A., Elwali Elalaoui F., Ghennioui A., Mezrhab A., Mezrhab A.: A GIS-AHP combination for the sites assessment of large-scale CSP plants with dry and wet cooling systems. Case study: Eastern Morocco. Solar Energy, vol. 166, 2018, pp. 2–12. https://doi.org/10.1016/j.solener.2018.03.038.
  • Villacreses G., Martínez-Gómez J., Jijón D., Cordovez M.: Geolocation of photovoltaic farms using Geographic Information Systems (GIS) with Multiple-criteria decision-making (MCDM) methods: Case of the Ecuadorian energy regulation. Energy Reports, vol. 8, 2022, pp. 3526–3548. https://doi.org/10.1016/j.egyr.2022.02.152.
  • Ayodele T.R., Ogunjuyigbe A.S.O., Odigie O., Jimoh A.A.: On the most suitable sites for wind farm development in Nigeria. Data in Brief, vol. 19, 2018, pp. 29–41. https://doi.org/10.1016/j.dib.2018.04.144.
  • Messaoudi D., Settou N., Negrou B., Rahmouni S., Settou B., Mayou I.: Site selection methodology for the wind-powered hydrogen refueling station based on AHP-GIS in Adrar, Algeria. Energy Procedia, vol. 162, 2019, pp. 67–76. https://doi.org/10.1016/j.egypro.2019.04.008.
  • Effat H.A., El-Zeiny A.M.: Geospatial modeling for selection of optimum sites for hybrid solar-wind energy in Assiut Governorate, Egypt. The Egyptian Journal of Remote Sensing and Space Science, vol. 25(2), 2022, pp. 627–637. https://doi.org/10.1016/j.ejrs.2022.03.005.
  • Coruhlu Y.E., Solgun N., Baser V., Terzi F.: Revealing the solar energy potential by integration of GIS and AHP in order to compare decisions of the land use on the environmental plans. Land Use Policy, vol. 113, 2022, 105899. https://doi.org/10.1016/j.landusepol.2021.105899.
  • Elboshy B., Alwetaishi M., Aly R.M.H., Zalhaf A.S.: A suitability mapping for the PV solar farms in Egypt based on GIS-AHP to optimize multi-criteria feasibility. Ain Shams Engineering Journal, vol. 13, no. 3, 2022, 101618. https://doi.org/10.1016/j.asej.2021.10.013.
  • Njoku H.O.: Solar Photovoltaic Potential in Nigeria. Journal of Energy Engineering, vol. 140, no. 2, 2014, 04013020. https://doi.org/10.1061/(ASCE)EY.1943-7897.0000145.
  • Ozoegwu C.G., Akpan P.U.: Solar energy policy directions for safer and cleaner development in Nigeria. Energy Policy, vol. 150, 2021, 112141. https://doi.org/10.1016/j.enpol.2021.112141.
  • World Bank: Download solar resource maps and GIS data for 200+ countries and regions. © 2020 The World Bank, Source: Global Solar Atlas 2.0, Solar resource data: Solargis. https://solargis.com/maps-and-gis-data/download [access: 16.05.2022].
  • Ragatoa D.S., Ogunjobi K.O., Okhimamhe A.A., Browne Klutse N.A., Lamptey B.L.: A predictive study of heat wave characteristics and their spatio-temporal trends in climatic zones of Nigeria. Modeling Earth Systems and Environment, vol. 4, no. 3, 2018, pp. 1125–1151. https://doi.org/10.1007/s40808-018-0480-7.
  • GinkgoMaps: GinkgoMaps – Free Digital Maps. 2018. http://www.ginkgomaps.com [access: 16.05.2022].
  • Comité Permanent Inter-états de Lutte contre la Sécheresse dans le Sahel (CILSS): Landscapes of West Africa: A Window on a Changing World. U.S. Geological Survey EROS, 47914 252nd St, Garretson, SD 57030, United States, 2016. https://edcintl.cr.usgs.gov/downloads/sciweb1/shared/wafrica/downloads/documents/Landscapes_of_West_Africa_Federal_Republic_of_Nigeria_en.pdf [access: 16.05.2022].
  • United Nations: Population Division. 2017. https://population.un.org/wup/[access: 16.05.2022].
  • Otabor O.: Ondo moves to break BEDC monopoly, gets monarchs’ backing. TheStreet Journal, January 2, 2021 https://thestreetjournal.org/ondo-moves-to-break-bedc-monopoly-gets-monarchs-backing/ [access: 16.05.2022].
  • Saaty T.L.: Decision making with the analytic hierarchy process. International Journal of Services Sciences, vol. 1, no. 1, 2008, pp. 83–98.
  • Fang H., Li J., Song W.: Sustainable site selection for photovoltaic power plant: An integrated approach based on prospect theory. Energy Conversion and Management, vol. 174, 2018, pp. 755–768. https://doi.org/10.1016/j.enconman.2018.08.092.
  • Chauhan N., Kumar V., Paliwal R.: Site Suitability Analysis of Water Harvesting Structure in Ghaggar River Basin Using Analytical Hierarchical Process and Geographical Information System Approach – A Case Study. Applied Ecology and Environmental Sciences, vol. 8, no. 6, 2020, pp. 402–407. https://doi.org/10.12691/aees-8-6-11.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8e10d552-c56a-465b-a245-9373736c4a33
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.