PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical methods for solving the modified filter algebraic riccati Elquation for H-infinity filtering

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Metody numeryczne rozwiązywania równania MFARE do filtrów typu H-infinity
Języki publikacji
EN
Abstrakty
EN
This paper presents numerical methods for solving the Modified Filter Algebraic Riccati Equation (MFARE) for synthesis of H-infinity fault detection filters. Two methods are presented, namely the gamma-iteration and then rewriting the MFARE in Linear Matrix Inequalities (LMIs) and casting it as a convex optimization problem. Each algorithm has to ensure the condition for a global convergence and also has to deliver an optimal solution. Not at least the computational cost has to be as small as possible.
PL
Zaprezentowano metodę numeryczną rozwiązywania równania MFARE (Modified Filter Algebraic Riccati Equation). Badano dwie metody – iterację gamma i przepisywanie równania w postać Linear Matrix Inequantities.
Rocznik
Strony
9--15
Opis fizyczny
Bibliogr. 24 poz., tab.
Twórcy
  • School of Postgraduate Studies of Multidisciplinary Technical Sciences, Faculty of Technical Sciences, Széchenyi István University, Győr
Bibliografia
  • [1] Edelmayer A., Bokor J., Keviczky L., An H∞ Filtering Approach to Robust Detection of Failures in Dynamical Systems, in Proc. 33th Annual Decision and Control, Conf., Buena Vista, USA, 1994, pp. 3037-3039.
  • [2] Edelmayer A., Bokor J., Keviczky L., An H∞ Filter Design for Linear Systems: Comparison of two Approaches, IFAC 13th Triennial World Congress, San Francisco, USA, 1996
  • [3] Yaesh I. , Shaked U., Game Theory Approach to Optimal Linear State Estimation and Its Relation to the Minimum H∞ norm Estimation, IEEE Trans. Aut. Control, AC-37(6), 1992, pp. 828-831.
  • [4] Chen J., Patton R.J., Robust Model-Based Fault Diagnosis for Dynamic Systems, First Edition, Springer Science & Business Media, New York, 1999
  • [5] Matusu R., Linear Matrix Inequalities and Semidefinite Programming: Applications in Control, Internal Journal of Mathematical Models and Methods in Applied Sciences, Vol. 8, 2014
  • [6] Gahinet P., Apkarian P., A linear matrix inequality approach to H∞ control, International Journal of Robust and Nonlinear Control, Vol.4, 1994, pp.421–448.
  • [7] Iwasaki T., Skelton R.E., All controllers for the general H∞ control problem: LMI existence conditions and state space formulas, Automatica, Vol. 30, 1994, pp. 1307–1317.
  • [8] Edelmayer A., Fault detection in dynamic systems: From state estimation to direct input reconstruction, Universitas-Győr Nonprofit Kft., Győr, 2012
  • [9] Chong E. K. P., Zak S. H., An Introduction to Optimization, 4th Edition, Wiley, New Jersey, 2013
  • [10] Ostertag E., Mono- and Multivariable Control and Estimation: Linear, Quadratic and LMI Methods, Matematical Engineering, Vol.2, Springer, Berlin, Heidelberg, 2011
  • [11] Ankelhed D., On the design of low order H∞ controllers, Ph.D. These, Linköping University, Linköping, 2011
  • [12] Duan G., Yu R., H. H., LMIs in Control Systems: Analysis, Design and Applications, CRC Press, Boca Raton, 2013
  • [13] Boyd S., Ghaoui L.E., Feron E. and Balakrishnan V., Linear Matrix Inequalities in System and Control Theory, SIAM, Philadelphia, 1994
  • [14] Bokor J., Gáspár P., Szabó Z., Robust Control Theory, Typotex, Budapest, 2013
  • [15] Lunze J., Regelungstechnik 2 – Mehrgrößensysteme, Digitale Regelung, Springer, 7. Auflage, 2013
  • [16] Jankovic M., Kolmanovsky I., Robust Nonlinear Controller for Turbocharged Diesel Engines, Procedings of the American Control Conference, Philadelphia, 1998
  • [17] Jung M., Mean-value modelling and robust control of the airpath of a turbocharged diesel engine, Ph.D. These, University of Cambridge, 2003
  • [18] Horvath Zs., Edelmayer A., LTI-modelling of the Air Path of Turbocharged Diesel Engine for Fault Detection and Isolation, Mechanical Engineering Letters, Vol. 14, Gödöllő, 2016, pp. 172-188.
  • [19] Herceg M., Nonlinear Model Predictive Control of a Diesel Engine with Exhaust Gas Recirculation and Variable Geometry Turbocharger, Diploma Thesis, Slovak University of Technology in Bratislava, Bratislava, 2006
  • [20] Yung C. F., Reduced-order H∞ controller design: An algebraic Riccati equation approach, Automatica, Vol. 36, 2000, pp. 923–926.
  • [21] Lanzon A., Feng Y., Anderson B. D. O. and Rotkowitz M., Computing the Positive Stabilizing Solution to Algebraic Riccati Equations With an Indefinite Quadratic Term via a Recursive Method, IEEE Trans. Aut. Control, Vol. 53, NO. 10. November, 2008, pp. 2280–2291.
  • [22] https://de.mathworks.com/help/control/ref/care.html?requested Domain=www.mathworks.com
  • [23] Horvath Zs., Edelmayer A., Solving of the Modified Filter Algebraic Riccati Equation for H-infinity fault detection filtering, Acta Universitatis Sapientiae Electrical and Mechanical Engineering, Vol. 9, 2017, pp. 57-77.
  • [24] Gahinet P., Nemirovski A., Laub A.J. and Chilali M., LMI Control Toolbox for Use with Matlab, The MathWorks Inc., Natick, 1995
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8e0f5512-1a4b-41ad-a640-45cad471cc8d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.