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Parallel computations of the step response of a floor heater with the

use of a graphics processing unit. Part 1: models and algorithms
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Abstract. The article presents a method of computing the step response of an air floor heater. The method implements parallel algorithms
on a graphics processing unit. In the analyzed concrete slab heating ducts are placed. Hot air is transferred through them, thanks to which
the heat penetrates into the slab. Heat transfer into the environment takes place on the top surface of the floor by natural convection and
radiation. The bottom surface of the slab is thermally insulated. A two-dimensional heat equation was discretized with the use of the implicit
finite difference method. In order to solve the obtained system of equations, the conjugate gradient method was used. Moreover, in order to
examine the possibility of shortening the computations time, the algorithm of this method was implemented on a graphics processing unit.
A computer program, using the CUDA parallel computing platform and linear algebra libraries CUBLAS and CUSPARSE, was developed.
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1. Introduction

In recent years, the use of floor heating as a way of providing
the heat to rooms has increased [1–3]. Floor heating systems
have many advantages, comparing with the traditional ones
[3, 4]. They provide higher thermal comfort in rooms (higher
temperature in the bottom, and lower - in the upper parts of a
room). They also enable using the whole space of a room be-
cause there are no outer heaters. Moreover, they do not cause
unfavorable air ionization and drying. Another advantage is
that they do not generate high investment costs.

In practice, electric and water floor heating systems are
the most frequently used [1, 4]. Many scientific works have
been devoted to the analysis of thermal fields in those types
of floor heaters [1, 2, 5–11]. Whereas, this article presents a
method of computing the step response of an air floor heater
[1, 12–15]. In this case, warm air, distributed through ducts
placed in the floor slab, is a heat source.

The step response is not a typical working state of the
heater, which usually works with a regulator [3]. For the fol-
lowing reasons, the step response is though one of the most
important dynamic characteristics [5, 16]:

a) it is a convenient connection between the research done on
steady and transient states,

b) with the use of the extended version of the Duhamel’s the-
orem [17], it enables determination of the response to any
excitation,

c) it is the basis for determining the average time constant of
the system, and therefore its equivalent transmittance.

Moreover, the step response models the heating initiation
which usually takes longer time in the analyzed systems. The
step response may also be a good model of overheating caused
by a breakdown of the regulator.

Thermal computations are time-consuming [6]. One of
the ways leading to their shortening is implementing parallel
computations which can be done on various types of systems:
massive parallel computers, clusters, grids, and for the last
few years – on graphics processing units. This last approach
seems to be very interesting because nowadays each personal
computer has a graphics card which enables doing numerical
computations which do not involve generating the graphics.
This type of technology is called GPGPU – General Purpose
Computing on Graphics Processing Unit [18]. The graphics
processing unit (GPU) can be equipped with a big number of
so called streaming processors. Due to this fact, it is possible
to achieve very high performance, exceeding several times
the performance of processors used in personal computers.
However, it should be stressed that achieving such high per-
formance is not possible with all computational problems.

In order to calculate the step response of a floor heater, a
two-dimensional heat equation was discretized in space and
time domains with the use of the implicit finite difference
method [15, 19–21]. As a result of the discretization, a linear
system of algebraic equations was obtained. In order to solve
the system of equations, the conjugate gradient method [22,
23] was applied. Its algorithm was implemented on a graph-
ics processing unit. The authors of this article analyzed the
conditions in which using the GPU in the conjugate gradi-
ent method is beneficial and enables shortening the computa-
tions time in comparison with the same work done on a CPU.
The research concerned algorithms adapted both to dense and
sparse matrices.

2. The analogue model of the step response

Hot air flowing through heating ducts is the source of heat
in the analyzed system [13, 15]. The ducts are placed in a
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concrete floor slab (Fig. 1). Their cross-section is a square
of the side length L. The distance between the edges of the
neighboring ducts also equals L. The ducts are placed sym-
metrically according to top and bottom surface of the floor
slab. The bottom surface is thermally insulated. The air is
heated by an electric heater and reaches temperature TH on
the central axis of the duct. Circulation of the hot air in the
ducts is done by fans. The air temperature far from the floor
equals Tamb.

Fig. 1. Cross-section of the floor heater: 1 – top surface of the floor,
2 – concrete, 3 – duct with circulating hot air, 4 – insulation (after

Ref. 15)

It is assumed that the length of the system is significantly
greater than the dimensions of its cross-section (which oc-
curs in heating ducts of high rooms, e.g. stations and halls).
In such case the thermal field of the slab is plane-parallel
(which means that it depends on two spatial variables x, y,
and a time variable – t). The system is low-temperature. This
means that the interval 〈Tamb, TH〉 is not wide. In this range
the values of:

1. heat transfer coefficients (in the ducts – αH , and from the
floor – αF ),

2. concrete parameters (specific heat – c, mass density – ρ,
thermal conductivity – λ),

can be then averaged.
The assumption concerning step excitation of the system

means taking constant value of air temperature TH in the
cross-section of the ducts for t ≥ 0.

In the middle of the distance between the ducts, the tem-
perature T (x, y, t) will obtain its minimum (e.g. for x = ±L
– Fig. 2). The segment between the straight lines x = ±L is
also symmetrical in terms of thermal conditions in relation to
x = 0 axis. For this reason, the maximum of temperature is
at x = 0. This can be expressed by the following equations:

∂T (x, y, t)

∂x

∣

∣

∣

∣

x=−L

= 0 for 0 ≤ y ≤ 1.5L, t ≥ 0, (1a)

∂T (x, y, t)

∂x

∣

∣

∣

∣

x=0

= 0

for y ∈ 〈0, L/4〉 ∪ 〈5L/4, 3L/2〉 , t ≥ 0.

(1b)

Equations (1a,b) implicate that during determination of the
spatio-temporal step response, the analysis can be limited to
the area of the slab distincted in Fig. 2 (the striped area). In
other parts of the system, the field distributions are mirror
images and repeat.

Fig. 2. The analyzed fragment of the floor heater

In the analyzed model, the system thermal response
h(x, y, t) to letting the hot air into the ducts at the zero
time moment (t = 0) is its step characteristics. The previ-
ous assumption about the plane-parallel temperature distribu-
tion leads to the field description by a two-dimensional heat
equation [15, 19, 20, 24]

∂2h(x, y, t)

∂x2
+

∂2h(x, y, t)

∂y2
−

1

χ

∂h(x, y, t)

∂t
= 0, (2)

where χ = λ/(cρ) – concrete diffusivity.
In moment t = 0, the system is in the steady state and its

all points are in ambient temperature Tamb:

h(x, y, t = 0) = Tamb. (3)

On the top surface of the floor slab (contour Γ3 in Fig. 2),
the heat transfer into the environment occurs by natural con-
vection and radiation, which is described by the Hankel’s
boundary condition with the total heat transfer coefficient αF :

−λ
∂h(x, y, t)

∂y

∣

∣

∣

∣

y=1.5L

= αF [h(x, y = 1.5L, t)− Tamb]

for − L ≤ x ≤ 0 and t ≥ 0.

(4)

The heat penetrates into the floor slab from a thermal duct.
This phenomenon can be described by an equation similar
to (4):

−λ
∂h(x, y, t)

∂η
= αH [TH − h(x, y, t)]

for (x, y) ∈ Γ5 ∪ Γ6 ∪ Γ7, t ≥ 0,

(5)

where ∂h(x, y, t)/∂η is a derivative in the normal direction
to contour Γ5 ∪ Γ6 ∪ Γ7 (Fig. 2). On the other edges of the
model, the heat transfer does not occur because of its sym-
metry (contours Γ2, Γ4, Γ8 – Eqs. (1a,b)) or ideal insulation
(contour Γ1):

∂h(x, y, t)

∂η
= 0

for (x, y) ∈ Γ1 ∪ Γ2 ∪ Γ4 ∪ Γ8, t ≥ 0,

(6)

where the derivative in the normal direction is calculated with
respect to contour Γ1 ∪ Γ2 ∪ Γ4 ∪ Γ8.

Equations (2)–(6) define the initial-boundary value prob-
lem whose solution means the determination of the step re-
sponse of the system.
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3. The discrete model of the step response

The two-dimensional heat Eq. (2) was discretized in space
and time domains with the use of the implicit finite differ-
ence method [15, 19]. The model of a floor heater, presented
in Fig. 2, was covered with a finite difference mesh. The frag-
ment of the mesh used and the method of nodes numbering,
are presented in Fig. 3a and Fig. 3b, respectively.

a)

b)

Fig. 3. Fragment of the finite difference mesh (a) and the method
of nodes numbering (b), where N – the number of nodes along the

x axis, M – the number of nodes along the y axis

Replacing in (2) the second spatial derivatives
(∂2h(x, y, t)/∂x2 and ∂2h(x, y, t)/∂y2) with central dif-
ference quotients, and the first order time derivative
(∂h(x, y, t)/∂t) with a forward difference quotient, a two-
dimensional heat equation in the differential form was ob-
tained:

hn+1

k+1,l + hn+1

k−1,l − 2hn+1

k,l

(∆x)2
+

hn+1

k,l+1
+ hn+1

k,l−1
− 2hn+1

k,l

(∆y)2

−
1

χ

hn+1

k,l − hn
k,l

∆t
= 0,

(7)

where subscripts k, l determine the location of a mesh node,
and the superscript n is the number of time moment.

Assuming that the mesh is spread evenly towards the x
and y axes (∆x = ∆y) [15], and introducing the Fourier’s
number:

Fo =
χ∆t

∆x2
(8)

and rearranging, the following equation was obtained:

(1 + 4Fo)hn+1

k,l − Fo(hn+1

k+1,l + hn+1

k−1,l

+hn+1

k,l+1
+ hn+1

k,l−1
) = hn

k,l.
(9)

Equation (9) enables computing the value of the step response
at the (k,l) nodal point for the time moment n+1, according
to the value of this function in neighboring nodes (k + 1,l),
(k−1,l), (k,l+1), (k,l−1) in the same n+1 time moment and
the value of the response in the (k,l) node from the previous
moment n.

Equation (9) concerns only the nodes located inside the
analyzed model and having 4 neighboring nodes. For the
nodes situated on the edges of the model, new equations con-
cerning boundary conditions should be worked out. For this
purpose Eq. (9) can be applied, but the step response values
in non-existing nodes must be eliminated.

In terms of the nodes situated on a plane surface, from
which the heat is transferred into the environment (contour
Γ3), the (k,l + 1) nodal point should be eliminated from
Eq. (9). Boundary condition (4) was used for this reason,
after having been transformed to the differential form. After
replacing the spatial derivative of the first order by a forward
difference quotient, condition (4) will take the following form:

−λ
hn+1

k,l+1
− hn+1

k,l−1

2∆y
= αF

[

hn+1

k,l − Tamb

]

. (10)

After transforming (10), the equation describing the value of
the step response hn+1

k,l+1
was obtained. It should be eliminated

from (9):

hn+1

k,l+1
= hn+1

k,l−1
− 2BiF (hn+1

k,l − Tamb), (11)

where BiF is the Biot’s number for the heat transfer coefficient
from the floor (αF ):

BiF =
αF ∆x

λ
, for ∆x = ∆y. (12)

After having replaced (11) for (9) and rearranging, the final
form of the differential equation was obtained for the nodes
situated on the edge Γ3:

Γ3 : (1 + 2Fo(2 + BiF ))hn+1

k,l

−Fo(hn+1

k+1,l + hn+1

k−1,l + 2hn+1

k,l−1
)

= hn
k,l + 2BiF FoTamb.

(13)

The eliminated (k,l + 1) nodal point is shown in Fig. 4.

Fig. 4. The finite difference mesh with non-existing nodal point
(k,l + 1)

In the case of the nodes situated on surfaces into which the
heat penetrates (contours Γ5, Γ6, Γ7), the procedure should
be identical (boundary condition (5) in the differential form
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should be used). The final form of the obtained equations
takes the following form:

Γ5 : (1 + 2Fo(2 + BiH))hn+1

k,l

−Fo(hn+1

k+1,l + hn+1

k−1,l + 2hn+1

k,l+1
)

= hn
k,l + 2BiHFoTH ,

(14a)

Γ6 : (1 + 2Fo(2 + BiH))hn+1

k,l

−Fo(hn+1

k,l+1
+ hn+1

k,l−1
+ 2hn+1

k−1,l)

= hn
k,l + 2BiHFoTH ,

(14b)

Γ7 : (1 + 2Fo(2 + BiH))hn+1

k,l

−Fo(hn+1

k+1,l + hn+1

k−1,l + 2hn+1

k,l−1
)

= hn
k,l + 2BiHFoTH ,

(14c)

where BiH is the Biot’s number for the heat transfer coeffi-
cient in the ducts (αH):

BiH =
αH∆x

λ
, for ∆x = ∆y. (15)

The bottom part of the floor slab is perfectly insulated. The
differential equation for the nodes situated on the Γ1 edge can
be determined by eliminating (k,l − 1) nodal point from (9).
For this reason boundary condition (6) takes the following
differential form:

hn+1

k,l−1
− hn+1

k,l+1

2∆y
= 0. (16)

Transforming (16) into the form:

hn+1

k,l−1
= hn+1

k,l+1
(17)

and substituting it to (9), the following form of equation is
obtained:

Γ1 : (1 + 4Fo)hn+1

k,l

−Fo(hn+1

k+1,l + hn+1

k−1,l + 2hn+1

k,l+1
) = hn

k,l.
(18)

Equations for the nodes situated on the adiabatic surfaces are
determined in the same way:

Γ2 : (1 + 4Fo)hn+1

k,l

−Fo(hn+1

k,l+1
+ hn+1

k,l−1
+ 2hn+1

k+1,l) = hn
k,l,

(19a)

Γ4 ∪ Γ8 : (1 + 4Fo)hn+1

k,l

−Fo(hn+1

k,l+1
+ hn+1

k,l−1
+ 2hn+1

k−1,l) = hn
k,l.

(19b)

Corner nodes are another problem. They require forming
some other equations. There are three types of such nodes:

• nodes joining two adiabatic contours,
• nodes joining an adiabatic contour with a contour of heat

transfer,
• nodes joining two contours of heat transfer.

The equations were derived with the use of the energy
balance method [15, 19]. In terms of corner nodes joining
two adiabatic contours, the equations are as follows:

Γ1 ∩ Γ2 : (1 + 4Fo)hn+1

k,l − 2Fo(hn+1

k,l+1
+ hn+1

k+1,l)

= hn
k,l,

(20a)

Γ1 ∩ Γ8 : (1 + 4Fo)hn+1

k,l − 2Fo(hn+1

k,l+1
+ hn+1

k−1,l)

= hn
k,l.

(20b)

The following differential equations concern corner nodes
joining an adiabatic contour with a contour of heat transfer:

Γ2 ∩ Γ3 : (1 + 2Fo(2 + BiF ))hn+1

k,l

−2Fo(hn+1

k+1,l + hn+1

k,l−1
)

= hn
k,l + 2BiF FoTamb,

(21a)

Γ3 ∩ Γ4 : (1 + 2Fo(2 + BiF ))hn+1

k,l

−2Fo(hn+1

k−1,l + hn+1

k,l−1
)

= hn
k,l + 2BiF FoTamb, )

(21b)

Γ4 ∩ Γ5 : (1 + 2Fo(2 + BiH))hn+1

k,l

−2Fo(hn+1

k−1,l + hn+1

k,l+1
)

= hn
k,l + 2BiHFoTH ,

(21c)

Γ7 ∩ Γ8 : (1 + 2Fo(2 + BiH))hn+1

k,l

−2Fo(hn+1

k−1,l + hn+1

k,l−1
)

= hn
k,l + 2BiHFoTH .

(21d)

The last type of corner nodes concerns two contours of heat
transfer:

Γ5 ∩ Γ6 :

(

1 + 4Fo

(

1 +
1

3
BiH

))

hn+1

k,l

−
2

3
Fo(hn+1

k+1,l + 2hn+1

k−1,l + 2hn+1

k,l+1
+ hn+1

k,l−1
)

= hn
k,l +

4

3
BiHFoTH ,

(22a)

Γ6 ∩ Γ7 :

(

1 + 4Fo

(

1 +
1

3
BiH

))

hn+1

k,l

−
2

3
Fo(hn+1

k+1,l + 2hn+1

k−1,l + hn+1

k,l+1
+ 2hn+1

k,l−1
)

= hn
k,l +

4

3
BiHFoTH .

(22b)

Putting Eqs. (9), (13), (14), (18)–(22) together for each
node of a finite difference mesh, we obtain the N ·M − (N −
1) · (2 · M − 5)/6 system of linear algebraic equations. The
meaning of N and M is explained in Fig. 3b. The part of the
formula after the sign of subtraction, (N − 1) · (2 ·M − 5)/6,
results from the fact that doing the calculations in thermal
ducts is not necessary. The computation of the step response
of a floor heater requires solving the above system of equa-
tions for chosen time moments ∆t, 2∆t, 3∆t, . . . from the
analyzed time interval (∆t – assumed time step). In addi-
tion the initial condition (3) is also taken into consideration.
During the computation of the step response in discrete time
moment n + 1 = 1, the initial temperature distribution for
n = 0, that is for t = 0, is used (on the right side of (9), (13),
(14), (18)–(22)).

The computer program which was then created, as well as
the applied algorithms, are described in the following chapter
of this paper.
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4. Algorithm of the discrete model solving

An original computer program was created in order to solve
the discrete model and to compute the step response of a
floor heater. The program was written in C++ programming
language. Its flow chart and the most important modules are
presented in Fig. 5.

Fig. 5. The computer program flow chart

The program consists of 5 main modules. The first one
reads the geometry of the analyzed model, its material prop-
erties and the parameters of numerical simulation. The second
module generates the nodes of the finite difference mesh on
the basis of the data read by the first module. Each node has
its type stated, considering its location in the model (interi-
or node, edge node or corner node). Taking in consideration
the types of nodes, the following module computes the co-
efficients values of the system of equations describing the
dynamics of the floor heater. The aim of the fourth module is
to determine the step response of the heater. The fifth module
computes its averaged time constant.

Determining the step response of the heater is the most
time-consuming part of the program, as it requires multiple
solution of the system of equations for the following time mo-
ments. The order of operations conducted in this module is
presented in Fig. 6.

Fig. 6. The flow chart of the module computing the step response

The conjugate gradient method [22, 23] was applied to
solve the system of linear equations. In the first step (for
t = ∆t) the ambient temperature Tamb is taken as the initial
approximation of the solution. After the system of equations
has been solved, the obtained results are saved in a file. In
the following steps, the values of solutions from the previous
step are taken as the initial approximation. The computations
are conducted until the end of a time interval (t = tend) in
which the step response is elaborated.

Solving a system of equations with the use of the con-
jugate gradient method requires doing some basic operations
on vectors and matrices, e.g.: matrix-vector multiplication,
dot product. Shortening the time needed to do the above op-
erations is possible while a graphics processing unit is used.
In such case the program is executed simultaneously by a
traditional processor (CPU) and a graphics processing unit
(GPU). To some extent, the graphics card serves as a math
coprocessor which conducts time-consuming algebraic oper-
ations. They are done as special programs, called threads.
A modern graphics processing unit consists of a large number
(several hundreds) of so called streaming processors, on which
the threads are executed. Memory accesses in the graphics
card, initiated by running threads, are very slow. They can
cause significant delays in threads executing. This problem
was solved by sending to initiation on the GPU a significant-
ly greater number of threads than the number of accessible
streaming processors. When certain threads initiate memory
access, the control system of the GPU suspends their exe-
cuting until the memory operations have been finished, and
it starts to execute other threads. Threads switching is done
without time delay. Such way of program executing on the
GPU requires that the threads are able to be done in any or-
der, independently from each other. It influences the solved
problem. Obtaining high performance (maximum utilization
of the GPU resources) is only possible when the problem can
be divided into sub-problems done in any order and indepen-
dently from each other. Among tasks of this type, there are
operations on vectors and matrices occurring in the algorithm
of the conjugate gradient method.

The CUDA (Compute Unified Device Architecture) [18,
25, 26] was applied in order to create the computer program.
CUDA is a parallel computing platform enabling writing pro-
grams in C/C++ languages, their compilation and executing
on a GPU made by NVIDIA Corporation. Together with the
CUDA, two implementations of numerical library BLAS (Ba-
sic Linear Algebra Subprograms) are delivered. They are used
to perform basic linear algebra operations on vectors and ma-
trices. In CUBLAS library [27] procedures for dense matrices
are implemented, and in CUSPARSE library [28] – for sparse
matrices.

Using the GPU for computations which are not related to
generating the graphics is a technique introduced just a few
years ago, and for this reason – not well known. After the
analyzed problem was discretized with the use of the implicit
finite differences method, a system of equations with a sparse
matrix of coefficients was obtained. Despite that, in order to
test the conditions, under which using a GPU is profitable,
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two implementations of the algorithm of conjugate gradient,
were examined: for sparse and dense matrices. The elaborat-
ed programs differed in the method of storing matrices, and
therefore – in the method of performing algebraic operations
on matrices.

In the case of the first program, adapted to dense matrices,
all elements of a matrix were stored in the computer memory
(also those of zero value). During the analysis of the con-
jugate gradient method algorithm it occurred, that the most
time-consuming operation is a matrix-vector multiplication.
Performing this operation was then implemented on a GPU.
The cublasSgemv(. . . ) function from CUBLAS library was
used for this purpose. Other algebraic operations of conjugate
gradient method were done on a CPU.

In the second program the method of storing matrix el-
ements was changed. The CSR method (Compressed Sparse
Row) [23] was applied, in which non-zero elements are stored
in memory line by line. In the case of vectors, all their ele-
ments were stored in the computer memory. Similarly to the
first program, only the multiplication of sparse matrix by a
dense vector was performed on a GPU. The cusparseScsr-
mv(. . . ) function from CUSPARSE library was used for this
purpose. The division of the created program into five mod-
ules caused that the change of the method of matrix storing
required only some modifications in the third and the fourth
modules of the program.

5. Summary

The article presents theoretical basis of computing the step
response of a floor air heater. It also describes algorithms ap-
plied in the created computer program which uses a GPU for
numerical computations. The second part of the article will
contain the results of computations, their numerical verifica-
tion and the evaluation of the applied algorithms.
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[11] M. Palic, Elektrische Wärme-und Heiztechnik, Expert Verlag,

Ehningen bei Böblingen, 1992.
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[14] O. Bozkir and S. Canbazoğlu, “Unsteady thermal performance

analysis of a room with serial and parallel duct radiant floor
heating system using hot airflow”, Energy and Buildings 36
(6), 579–586 (2004).

[15] F. Incropera, D. De Witt, T. Bergman, and A. Lavine, Intro-

duction to Heat Transfer, John Wiley&Sons, Hoboken, 2007.
[16] K.T. Januszkiewicz, “The dynamical properties of electrically

heated rooms”, Electrical Review 3, 85–87 (2007), (in Polish).
[17] J.V. Beck, K.D. Cole, A. Haji-Sheikh, and B. Litkouhi, Heat

Conduction Using Green’s Functions, Hemisphere Publishing
Corporation, London, 1992.

[18] D.B. Kirk and W.W. Hwu, Programming Massively Paral-

lel Processors: a Hands-on Approach, Morgan Kaufmann,
Burlington, 2010.

[19] J. Szargut, R. Białecki, A. Fic, K. Kurpisz, A. Nowak, Z.
Rudnicki, and J. Skorek, Numerical Modelling of Temperature

Fields, WNT, Warsaw, 1992, (in Polish).
[20] J. Taler and P. Duda, Solving Direct and Inverse Heat Transfer

Problems, WNT, Warsaw, 2003, (in Polish).
[21] J.D. Hoffman, Numerical Methods for Engineers and Scientists,

Marcel Dekker, Inc., New York, 2001.
[22] J.R. Shewchuk, “An introduction to the conjugate gradient

method without the agonizing pain”, in Technical Report,
Carnegie Mellon University, Pittsburgh, 1994.

[23] R. Barrett, M. Berry, T.F. Chan, J. Demmel, J.M. Donato, J.
Dongarra, V. Eijkhout, R. Pozo, Ch. Romine, and H. Van der
Vorst, Templates for the Solution of Linear Systems: Building

Blocks for Iterative Methods, SIAM, Philadelphia, 1994.
[24] K. Gnidzińska, G. De Mey, and A. Napieralski, “Heat dissipa-

tion and temperature distribution in long interconnect lines”,
Bull. Pol. Ac.: Tech. 58 (1), 119–124 (2010).

[25] Compute Unified Device Architecture (CUDA),
http://www.nvidia.pl/object/cuda home new pl.html (2012).

[26] J. Sanders and E. Kandrot, CUDA by Example. An introduc-

tion to General-Purpose GPU Programming, Addison-Wesley,
Upper Saddle River, 2010.

[27] CUDA CUBLAS Library, NVIDIA Corporation, Santa Clara,
CA, 2010.

[28] CUDA CUSPARSE Library, NVIDIA Corporation, Santa
Clara, CA, 2010.

948 Bull. Pol. Ac.: Tech. 61(4) 2013

Brought to you by | Biblioteka Glowna Uniwersytetu
Authenticated | 212.122.198.172
Download Date | 3/6/14 9:31 AM


