Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The study presented in this article involves q-calculus connected to fractional calculus applied in the univalent functions theory. Riemann-Liouville fractional integral of q-hypergeometric function is defined here, and investigations are conducted using the theories of differential subordination and superordination. Theorems and corollaries containing new subordination and superordination results are proved for which best dominants and best subordinants are given, respectively. As an application of the results obtained by the means of the two theories, the statement of a sandwich-type theorem concludes the study.
Wydawca
Czasopismo
Rocznik
Tom
Strony
art. no. 20220186
Opis fizyczny
Bibliogr. 25 poz.
Twórcy
autor
- Department of Mathematics and Computer Science, University of Oradea, 1 Universitatii Street, 410087 Oradea, Romania
autor
- Department of Mathematics and Computer Science, University of Oradea, 1 Universitatii Street, 410087 Oradea, Romania
Bibliografia
- [1] H. M. Srivastava, Operators of basic (or q-) calculus and fractional q-calculus and their applications in geometric function theory of complex analysis, Iran. J. Sci. Technol. Trans. A Sci. 44 (2020), 327–344.
- [2] F. H. Jackson, q-Difference equations, Am. J. Math. 32 (1910), 305–314.
- [3] F. H. Jackson, On q-definite integrals, Quart. J. Pure Appl. Math. 41 (1910), 193–203.
- [4] M. E.-H. Ismail, E. Merkes, and D. Styer, A generalization of starlike functions, Complex Var. Theory Appl. 14 (1990), 77–84.
- [5] H. M. Srivastava, Univalent functions, fractional calculus and associated generalized hypergeometric functions, In: H. M. Srivastava, S. Owa, Eds. Univalent Functions, Fractional Calculus, and Their Applications, Halsted Press (Ellis Horwood Limited), Chichester, UK, John Wiley and Sons, New York, NY, USA, 1989. p. 329–354.
- [6] S. Kanas and D. Răducanu, Some class of analytic functions related to conic domains, Math. Slovaca 64 (2014), 1183–1196.
- [7] H. Aldweby and M. Darus, Some subordination results on q-analog of Ruscheweyh differential operator, Abstract Appl. Anal. 6 (2014), Article ID 958563.
- [8] S. Mahmood and J. Sokół, New subclass of analytic functions in conical domain associated with Ruscheweyh q-differential operator, Results Math. 71 (2017), no. 4, 1345–1357.
- [9] M. Govindaraj and S. Sivasubramanian, On a class of analytic functions related to conic domains involving q-calculus, Anal. Math. 43 (2017), 475–487.
- [10] M. Naeem, S. Hussain, T. Mahmood, S. Khan, and M. Darus, A new subclass of analytic functions defined by using Sălăgean q-differential operator, Mathematics 7 (2019), 458. DOI: https://doi.org/10.3390/math7050458.
- [11] S. M. El-Deeb, Quasi-Hadamard product of certain classes with respect to symmetric points connected with q-Sălăgean operator, Montes Taurus J. Pure Appl. Math. 4 (2022), no. 1, 77–84.
- [12] A. Alb Lupaş, Subordination results on q-analog of Sălăgean differential operator, Symmetry 14 (2022), 1744. DOI: https://doi.org/10.3390/sym14081744.
- [13] A. Mohammed and M. Darus, A generalized operator involving the q-hypergeometric function, Mat. Vesnik 65 (2013), no. 4, 454–465.
- [14] I Aldawish and M. Darus, Starlikeness of q-differential operator involving quantum calculus, Korean J. Math. 22 (2014), no. 4, 699–709, DOI: https://doi.org/10.11568/kjm.2014.22.4.699.
- [15] H. M. Srivastava, J. Cao, and S. Arjika, A note on generalized q-difference equations and their applications involving q-hypergeometric functions, Symmetry 12 (2020), 1816. DOI: https://doi.org/10.3390/sym12111816.
- [16] A. A. Lupaş and G. I. Oros, Differential subordination and superordination results using fractional integral of confluent hypergeometric function, Symmetry 13 (2021), 327. DOI: https://doi.org/10.3390/sym13020327.
- [17] F. Ghanim and H. F. Al-Janaby, An analytical study on Mittag-Leffler-confluent hypergeometric functions with fractional integral operator, Math. Methods Appl. Sci. 44 (2021), 3605–3614.
- [18] F. Ghanim, S. Bendak, and A. Al Hawarneh, Certain implementations in fractional calculus operators involving Mittag-Leffler-confluent hypergeometric functions, Proc. R. Soc. A 478 (2022), 20210839.
- [19] G. I. Oros and S. Dzitac, Applications of subordination chains and fractional integral in fuzzy differential subordinations, Mathematics 10 (2022), 1690. DOI: https://doi.org/10.3390/math10101690.
- [20] S. Owa, On the distortion theorems I, Kyungpook Math. J. 18 (1978), 53–59.
- [21] S. Owa and H. M. Srivastava, Univalent and starlike generalized hypergeometric functions, Can. J. Math. 39 (1987), 1057–1077.
- [22] G. Gasper and M. Rahman, Basic hypergeometric series, in: Encyclopedia of Mathematics and its Applications, Vol. 35, Cambridge University Press, Cambridge, UK, 1990.
- [23] S. S. Miller and P. T. Mocanu, Differential Subordinations, Theory and Applications, Marcel Dekker, Inc., New York, NY, USA; Basel, Switzerland, 2000.
- [24] S. S. Miller and P. T. Mocanu, Subordinations of differential superordinations, Complex Var. 48 (2003), 815–826.
- [25] T. Bulboacă, Classes of first order differential superordinations, Demonstratio Math. 35 (2002), no. 2, 287–292.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8e0806f8-e955-4f85-bc22-c2266e772bd7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.