Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We prove that an integrated simple random walk, where random walk and integrated random walk are conditioned to return to zero, has asymptotic probability n−1/2 to stay positive. This question is motivated by random polymer models and proves a conjecture by Caravenna and Deuschel.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
1--22
Opis fizyczny
Bibliogr. 19 poz.
Twórcy
autor
- Technische Universität Darmstadt, FB Mathematik, AG Stochastik, Schlossgartenstr. 7, 64289 Darmstadt, Germany
autor
- Westfälische Wilhelms-Universität, Institut für Mathematische Statistik, Einsteinstr. 62, 48149 Münster, Germany
autor
- St. Petersburg State University, Department of Mathematics and Mechanics, Bibliotechnaya pl., 2, 198504 Stary Peterhof, Russia
- MAI, Linköping University, 58183 Linköping, Sweden
Bibliografia
- [1] F. Aurzada, On the one-sided exit problem for fractional Brownian motion, Electron. Comm. Probab. 16 (2011), pp. 392-404.
- [2] F. Aurzada and C. Baumgarten, Survival probabilities for weighted random walks, ALEA Lat. Am. J. Probab. Math. Stat. 8 (2011), pp. 235-258.
- [3] F. Aurzada and S. Dereich, Universality of the asymptotics of the one-sided exit problem for integrated processes, Ann. Inst. H. Poincaré Probab. Statist. 49 (2013), pp. 236-251.
- [4] F. Aurzada and T. Simon, Persistence probabilities & exponents, preprint, arXiv: 1203.6554, 2012; Lévy Matters, Springer (to appear).
- [5] C. Baumgarten, Survival probabilities of some iterated processes, preprint, arXiv: 1106.2999, 2011; Probab. Math. Statist. (to appear).
- [6] C. Baumgarten, Survival probabilities of autoregressive processes, ESAIM Probab. Stat. 18 (2014), pp. 145-170.
- [7] P. Billingsley, Convergence of Probability Measures, second edition, Wiley Ser. Probab. Stat., Wiley, New York 1999.
- [8] A. J. Bray, S. N. Majumdar, and G. Schehr, Persistence and first-passage properties in non-equilibrium systems, Adv. in Phys. 62 (3) (2013), pp. 225-361.
- [9] A. Bulinski and A. Shashkin, Limit Theorems for Associated Random Fields and Related Systems, Adv. Ser. Stat. Sci. Appl. Probab., Vol. 10, World Scientific, Hackensack, NJ, 2007.
- [10] F. Caravenna and J.-D. Deuschel, Pinning and wetting transition for (1+1)-dimensional fields with Laplacian interaction, Ann. Probab. 36 (6) (2008), pp. 2388-2433.
- [11] F. Caravenna and J.-D. Deuschel, Scaling limits of (1 + 1)-dimensional pinning models with Laplacian interaction, Ann. Probab. 37 (3) (2009), pp. 903-945.
- [12] A. Dembo, J. Ding, and F. Gao, Persistence of iterated partial sums, Ann. Inst. H. Poincaré Probab. Statist. 49 (3) (2013), pp. 873-884.
- [13] D. Denisov and V. Wachtel, Exit times for integrated random walks, preprint, arXiv: 1207.2270, 2012; Ann. Inst. H. Poincaré Probab. Statist. (to appear).
- [14] J. D. Esary, F. Proschan, and D. W. Walkup, Association of random variables, with applications, Ann. Math. Statist. 38 (5) (1967), pp. 1466-1474.
- [15] W. Feller, An Introduction to Probability Theory and Its Applications. Vol. II, second edition, Wiley, New York 1971.
- [16] S. N. Majumdar, Persistence in nonequilibrium systems, Current Sci. 77 (3) (1999), pp. 370-375.
- [17] Ya. G. Sinaĭ, Distribution of some functionals of the integral of a random walk, Teoret. Mat. Fiz. 90 (3) (1992), pp. 323-353.
- [18] V. Vysotsky, On the probability that integrated random walks stay positive, Stochastic Process. Appl. 120 (7) (2010), pp. 1178-1193.
- [19] V. Vysotsky, Positivity of integrated random walks, Ann. Inst. H. Poincaré Probab. Statist. 50 (1) (2014), pp. 195-213.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8e07aa7b-64ee-4f24-b342-f58b183e0971