PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Ocena aspektów energetycznych oświetlenia stosowanego do uprawy roślin

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
Evaluation of energy aspects of lighting used for plant cultivation
Języki publikacji
PL
Abstrakty
PL
W pracy dokonano oceny efektywności oświetlenia do uprawy roślin. Badania zostały dokonane w oparciu o doświadczalną uprawę popularnych ziół: mięty, bazylii i kolendry. Oceniany był uzysk masy suchej i zawartość chlorofilu dla różnych widm oświetlenia z uwzględnieniem pobieranej mocy elektrycznej, a także wpływ dynamicznej zmiany wysokości modułu oświetleniowego nad uprawą na pobieraną energię. Wyniki wskazują na znaczny potencjał oszczędności energii.
EN
An assessment of the effectiveness of lighting for plants has been carried out. The research was based on the experimental cultivation of popular herbs: mint, basil and coriander. Dry matter yield and chlorophyll content for various light spectra were evaluated, taking into account the electrical power consumption, as well as the impact of the dynamic change of the height of the lighting module above the cultivation on the energy consumption. The results show significant potential for energy savings.
Rocznik
Strony
192--199
Opis fizyczny
Bibliogr. 55 poz., rys., tab.
Twórcy
  • Politechnika Gdańska, Wydział Elektroniki, Telekomunikacji i Informatyki, Katedra Metrologii i Optoelektroniki, ul. Gabriela Narutowicza 11/12, 80-233 Gdańsk
  • Politechnika Gdańska, Wydział Elektroniki, Telekomunikacji i Informatyki, Katedra Metrologii i Optoelektroniki, ul. Gabriela Narutowicza 11/12, 80-233 Gdańsk
  • NIVISS Leszek Łosin Sp. J. ul. Kopernika 56, 81-411 Gdynia
Bibliografia
  • [1] Van Gerrewey, T., Boon, N., Geelen. D. Vertical Farming: The Only Way Is Up? Agronomy, 12(1):2, (2022)
  • [2] Nájera, C., Gallegos-Cedillo, V.M., Ros, M., Pascual J.A. Role of Spectrum-Light on Productivity, and Plant Quality over Vertical Farming Systems: Bibliometric Analysis. Horticulturae, 9(63), (2023)
  • [3] Kozai, T., Niu, G. Chapter 2 - Role of the plant factory with artificial lighting (PFAL) in urban areas. In Plant Factory, 2nd Ed., Elsevier: Amsterdam, The Netherlands, 2020, 7-34
  • [4] Arabzadeh Y., Miettinen, P., Kotilainen, T., Herranen P., Karakoc, A., Kummu M., Rautkari, L. Urban vertical farming with a large wind power share and optimized electricity costs. Applied Energy, 331:120416, (2023), 77-91
  • [5] Butturini M., Marcelis L. F.M., Chapter 3 - Vertical farming in Europe: present status and outlook In Plant Factory 2nd Ed., Elsevier Inc., San Diego, Waltham, USA, (2020)
  • [6] BBC News, Tesco and Aldi limit sales of tomatoes, peppers and cucumbers.https://www.bbc.com/news/business-64729317 (dostęp 07-03-2023)
  • [7] Pattison, P.M., Tsao, J.Y., Brainard, G.C., BugBee, B., LEDs for photons, physiology and food. Nature 563, (2018), 493–500
  • [8] Metallo, R.M., Kopsell, D.A., Sams, C.E., Bumgarner, N.R. Influence of blue/red vs. white LED light treatments on biomass, morphology, and quality parameters of hydroponically grown kale, Scientia Horticultura, 235, (2018), 189-197
  • [9] AsiaFarming, Vertical Tomato farming-modern way of getting more yields in less space. 2022. https://www.asiafarming.com/ vertical-tomato-farming-modern-way-of-getting-more-yields-in-less-space (dostęp 17.03.2023).
  • [10] Rihan, H.Z., Aljafer, N., Jbara, M., McCallum, L., Lengger, S., Fuller, M.P. The Impact of LED Lighting Spectra in a Plant Factory on the Growth, Physiological Traits and Essential Oil Content of Lemon Balm (Melissa officinalis). Plants 11(3):342, (2022)
  • [11] Rihan, H.Z., Aldarkazali, M., Mohamed, S.J., McMulkin, N.B., Jbara, M.H., Fuller, M.P. A Novel New Light Recipe Significantly Increases the Growth and Yield of Sweet Basil (Ocimum basilicum) Grown in Plant Factory System. Agronomy, 10(7):934 (2020)
  • [12] Feldzensztajn, M., Wierzba, P., Mazikowski, A. Examination of Spectral Properties of Medicinal Plant Leaves Grown in Different Lighting Conditions Based on Mint Cultivation, MDPI Sensors, 21:4122, (2021)
  • [13] Kusuma, P., Ouzounis, T., Hawley, D., Kerstens, T., Marcelis L.F.M., Heuvelink E., On the pros and cons of red photons for greenhouse tomato production: increasing the percentage of red photons improves LED efficacy but plant responses are cultivar-specific, The Journal of Horticultural Science and Biotechnology, 2022
  • [14] SharathKumar, M., Heuvelink, E., and Marcelis, L. F. M. Vertical farming: moving from genetic to environmental modification. Trends in Plant Science, 25(8), (2020). doi:10.1016/ j.tplants.2020.05.012
  • [15] Thoma, F., Somborn-Schulz, A,, Schlehuber, D., Keuter, V., Görge Deerberg, G. Effects of Light on Secondary Metabolites in Selected Leafy Greens: A Review. Frontiers in Plant Science, 11:457, (2020)
  • [16] Paucek I., Appolloni E., Pennisi G., Quaini S., Gianquinto, G.,Orsini, F. LED Lighting Systems for Horticulture: Business Growth and Global Distribution. Sustainability, 12:7516, (2020)
  • [17] Kulus, D., Woźny, A. Influence of light conditions on the morphogenetic and biochemical response of selected ornamental plant species under in vitro conditions: a mini-review, BioTechnologia 101(1), (2020), 75-84
  • [18] Dutta Gupta, S., Agarwal, A. Chapter 1 - Artificial Lighting System for Plant Growth and Development: Chronological Advancement, Working Principles, and Comparative Assessment. In: Dutta Gupta, S. (eds) Light Emitting Diodes for Agriculture, Springer, Singapore, (2017)
  • [19] M., Mazikowski, A., Cegielski T. Analiza efektywności systemów oświetlania roślin na przykładzie uprawy bazylii, Przegląd Elektrotechniczny, 10(7), 2019
  • [20] Bugbee, B. Chapter 5 - Economics of LED Lighting. In: Dutta Gupta, S. (eds) Light Emitting Diodes for Agriculture, Springer, Singapore, 2017. doi:10.1007/978-981-10-5807-3_5
  • [21] Alrajhi, A.A., Alsahli, A.S., Alhelal, I.M., Rihan, H.Z., Fuller, M.P., Alsadon, A.A., Ibrahim, A.A. The Effect of LED Light Spectra on the Growth, Yield and Nutritional Value of Red and Green Lettuce (Lactuca sativa). Plants 12(3): 463, (2023)
  • [22] Nelson, J.A., Bugbee, B. Economic Analysis of Greenhouse Lighting: Light Emitting Diodes vs. High Intensity Discharge Fixtures, PLoS ONE, 9(6), (2014)
  • [23] Mikołajczyk, M., Mikołajczyk, A. Wpływ różnych strumieni świetlnych pochodzących z lamp halogenowych i ledowych na intensywność fotosyntezy w obecności kwasu askorbinowego. Przegląd Elektrotechniczny, 97(9), 2021,21-25
  • [24] A. Mazikowski and M. Feldzensztajn, Design and development of lamp of adjustable spectrum, Photon.Lett.PL, 14(1), (2022), 13-15
  • [25] Singh D., Basu C., Meinhardt-Wollweber M., Roth B. LEDs for energy efficient greenhouse lighting. Renewable and Sustainable Energy Reviews, 49, (2015), 139-147
  • [26] Kusuma, P., Pattison, P. M., and Bugbee, B. From physics to fixtures to food: current and potential LED efficacy. Hortic. Res. 7:56, (2020)
  • [27] Rahman, M.M., Vasiliev, M., Alameh, K. LED Illumination Spectrum Manipulation for Increasing he Yield of Sweet Basil (Ocimum basilicum L.). Plants, 10:344 (2021)
  • [28] Carvalho, S.D., Schwieterman, M.L., Abrahan, C.E., Colquhoun, T.A., Folta, K.M. Light quality dependent changes in morphology, antioxidant capacity, and volatile production in sweet basil (Ocimum basilicum). Front. Plant Sci., 7:1328, (2016)
  • [29] Faline, D.M., Plantenga, S.W., Bergonzi, C., Bachem, W.B. High light accelerates potato flowering independently of the FT-like flowering signal StSP3D. Environ. Exp. Bot. 160, (2019), 35-44
  • [30] Christiaensac, A., Gobina, B., Huylenbroeckb, J.V. Adventitious rooting of Chrysanthemum is stimulated by a low-red:far-red ratio. J. Plant Physiol. 236, (2019), 117-123
  • [31] Galvão, V., Fankhauser, C. Sensing the light environment in plants: photoreceptors and early signaling steps. Curr. Opin. Neurobiol. 34, (2015) 46-53
  • [32] Meng, M., Runkle, E.S. Growth Responses of Red-Leaf Lettuce to Temporal Spectral Changes. Front. Plant Sci., 11:1623, (2020)
  • [33] Ohtake, N., Ishikura, M., Suzuki, H., Yamori, W., Goto, E. Continuous Irradiation with Alternating Red and Blue Light Enhances Plant Growth While Keeping Nutritional Quality in Lettuce. Hort. Sci., 53(12), (2018), 1804-1810
  • [34] Yahia, I.B.H., Jaouadi, R., Trimech, R., Boussaid, M., Zaouali, Y. Variation of chemical composition and antioxidant activity of essential oils of Mentha x rotundifolia (L.) Huds. (Lamiaceae) collected from different bioclimatic areas of Tunisia. Biochem. Syst. Ecol. 84, (2019) 8-16
  • [35] Magagnini, G., Grassi, G., Kotiranta, S. The Effect of Light Spectrum on the Morphology and Cannabinoid Content of Cannabis sativa L. Med. Cannabis Cannabinoids, 1, (2018) 19- 27
  • [36] Hosseini, A., Mehrjerdi, M.Z., Aliniaeifard, S., Seif, M. Photosynthetic and growth responses of green and purple basil plants under different spectral composition, Physiology and Molecular Biology of Plants, 25, (2019)
  • [37] Dou, H., Niu, G., Gu, M. Photosynthesis, Morphology, Yield, and Phytochemical Accumulation in Basil Plants Influenced by Substituting Green Light for Partial Red and/or Blue Light. Hort. Science, 54(10), (2019) 1769-1776
  • [38] Wai, T.S., Chaichana, C., Maruyama, N. Energy cost analysis of growing strawberries in a controlled environment chamber, Energy Reports, 9(1), (2023), 677-687
  • [39] Ustawa o szczególnych rozwiązaniach służących ochronie odbiorców energii elektrycznej w 2023 roku w związku z sytuacją na rynku energii elektrycznej, Art. 37, Dz.U. 2022 poz. 2127, 2022.
  • [40] J. Yan, H. Liu, W. Zhao, Y. Su, Photon flux calibration of LED in horticulture lighting, Optical Metrology and Inspection for Industrial Applications IX, Proc. SPIE, 12319, (2022)
  • [41] MacCree, K.J. Test of current definitions of photosynthetically active radiation against leaf photosynthesis data. Agric. Meteorol., 10, (1972) 443-453
  • [42] Son, K., & Oh, M. Leaf Shape, Growth, and Antioxidant Phenolic Compounds of Two Lettuce Cultivars Grown under Various Combinations of Blue and Red Light-emitting Diodes, HortScience, 48(8), (2013) 988-995
  • [43] Pennisi, G., Orsini, F., Blasioli, S. et al. Resource use efficiency of indoor lettuce (Lactuca sativa L.) cultivation as affected by red:blue ratio provided by LED lighting. Sci Rep,9:14127, (2019)
  • [44] Razzak, Md.A., Asaduzzaman, Md., Tanaka, H. Asao, T. Effects of supplementing green light to red and blue light on the growth and yield of lettuce in plant factories, Scientia Horticulturae, 305: 111429, (2022)
  • [45] Cammarisano, L., Donnison, I.S., Robson, P.R.H. The Effect of Red & Blue Rich LEDs vs Fluorescent Light on Lollo Rosso Lettuce Morphology and Physiology. Front. Plant Sci., 12:603411, (2021)
  • [46] Shimizu, H. Saito, Y., Nakashima, H., Miyasaka, Y., Ohdoi, K. Light Environment Optimization for Lettuce Growth in Plant Factory, IFAC Proceedings Volumes, 44(1), (2011) 605-609
  • [47] Zhen, S., van Iersel, M., Bugbee, B. Why Far-Red Photons Should Be Included in the Definition of Photosynthetic Photons and the Measurement of Horticultural Fixture Efficacy. Frontiers in Plant Science, 12, (2021)
  • [48] Zhen S., Bugbee B. Substituting Far-Red for Traditionally Defined Photosynthetic Photons Results in Equal Canopy Quantum Yield for CO2 Fixation and Increased Photon Capture During Long-Term Studies: Implications for Re-Defining PAR. Frontiers in Plant Science, 11, (2020)
  • [49] Kusuma, P., Fatzinger, B., Bugbee, B., Soer, W., Wheeler, R. LEDs for Extraterrestrial Agriculture: Tradeoffs between Color Perception and Photon Efficacy. Raport NASA/TM-20210016720, (2021)
  • [50] Fryc, I., Fryc, J., Jakubowski, P., Wąsowski, A.K. Techniczne aspekty bezpieczeństwa fotobiologicznego źródeł światła, stosowanych do użytku domowego, z uwzględnieniem zagadnień medyczno-prawnych. Przegląd Elektrotechniczny, 93(3), (2017) 232-237
  • [51] [1] Larsen, D.H., Woltering, E.J., Nicole, C.C.S., Marcelis, L.M.F. Response of Basil Growth and Morphology to Light Intensity and Spectrum in a Vertical Farm. Frontiers in Plant Science, 11, (2020)
  • [52] Gao, Q., Liao, Q., Li, Q., Yang, Q., Wang, F., Li, J. Effects of LED Red and Blue Light Component on Growth and Photosynthetic Characteristics of Coriander in Plant Factory. Horticulturae, 8(12):1165, (2022)
  • [53] D.D., Xydis, G. Chapter One - How energy innovation in indoor vertical farming can improve food security, sustainability, and food safety?, Editor(s): Marc J. Cohen, Advances in Food Security and Sustainability, Elsevier, 5, (2020), 1-51
  • [54] Kelly, N., Choe, D., Meng, Q., Runkle, E.S. Promotion of lettuce growth under an increasing daily light integral depends on the combination of the photosynthetic photon flux density and photoperiod. Scientia Horticulturae, 272:109565, (2020)
  • [55] Avgoustaki, D.D. Optimization of Photoperiod and Quality Assessment of Basil Plants Grown in a Small-Scale Indoor Cultivation System for Reduction of Energy Demand. Energies, 12:3980, (2019)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8e015d95-f1cf-4fe9-ac89-04553a0984c9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.