PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of Improved b-Value and Clustering Analysis for Structural Integrity Assessment of CFRP Specimen under Tensile Loading

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the present study, the evolution of different failure mechanisms in carbon fiber reinforced polymer composites is being investigated using acoustic emission technique, unsupervised clustering technique and improved b-value analysis. The experimental part involved the realization of tensile tests of different materials, namely samples with [0/90]2S uniaxial layer configuration and [0/90]2S twill fabric samples. Both types of tests were monitored using one wideband acoustic emission sensor, while the tensile tests of twill fabric samples were additionally supplemented with resonant acoustic emission sensor to perform a comparative analysis between datasets from resonant/wideband acoustic emission sensor. The comparative study itself was preceded by the failure mechanisms characterization process, which has been performed on the tensile test dataset of [0/90]2S layer configuration with the contribution of clustering technique. The subsequent analysis of the twill fabric resonant/wideband acoustic emission sensor datasets included the improved b-value technique, which relates the magnitude of fracture with the slope of the amplitude distribution. The presented results, especially in terms of the improved b-value technique applied to individual clusters, show enhanced ability to assess in more detail the actual structural integrity depending on the applied load.
Twórcy
  • VŠB-Technical University of Ostrava, Faculty of Mechanical Engineering, Department of Applied Mechanics, 17. listopadu 15/2127, 708 33 Ostrava-Poruba, Czech Republic
  • Czestochowa University of Technology, Faculty of Mechanical Engineering and Computer Science, Department of Mechanics and Machine Design Fundamentals, 73 Dąbrowskiego Str., 42-201 Częstochowa, Poland
  • VŠB-Technical University of Ostrava, Faculty of Mechanical Engineering, Department of Applied Mechanics, 17. listopadu 15/2127, 708 33 Ostrava-Poruba, Czech Republic
Bibliografia
  • [1] M. Šofer, J. Cienciala, M. Fusek, P. Pavlíček, R. Moravec, Materials 14, 1-16 (2021). DOI: https://doi.org/10.3390/ma14040786
  • [2] J. Xu, W. Wang, Q. Han, X. Liu, Compos. Struct. 238, 1-10 (2020). DOI: https://doi.org/10.1016/j.compstruct.2020.111948
  • [3] M. Šofer, P. Kučera, E. Mazancová, L. Krejčí, J. Nondestruct. Eval. 38, 1-13 (2019). DOI: https://doi.org/10.1007/s10921-019-0627-0.
  • [4] P. Šofer, M. Šofer, J. Gebauer, P. Niegodajew, K. Gruszka, Acta Phys. Pol. A 138, 272-275 (2020). DOI: https://doi.org/10.12693/APhysPolA.138.272.
  • [5] M. Šofer, P. Ferfecki, P. Šofer, Experimental construction of Lamb wave dispersion curves in plates, in: F. Trebuňa, R. Huňady, J. Bocko, J. Kostka, P. Frankovský, T. Kula (Eds.), 55th Conference on Experimental Stress Analysis (EAN 2017), Technical University of Kosice - Faculty of Mechanical Engineering (2017).
  • [6] M. Šofer, P: Ferfecki, P. Šofer, MATEC Web Conf. 157, 08011 (2018). DOI: https://doi.org/10.1051/matecconf/201815708011
  • [7] M. Šofer, P. Šofer, P. Ferfecki, M. Molčan, J. Stryja, Appl. Math. Model. 89, 413-427 (2021). DOI: https://doi.org/10.1016/j.apm.2020.08.017
  • [8] M. Shateri, M. Ghaib, D. Svecova, D. Thomson, Smart Mater. Struct. 26, 1-17 (2017). DOI: https://doi.org/10.1088/1361-665X/aa6e43
  • [9] Ch.U. Grosse, M. Ohtsu, Acoustic emission testing, Springer, Berlin, Heidelberg (2008).
  • [10] M.G.R. Sause, In-situ monitoring of fiber-reinforced composites: theory, basic concepts, methods, and applications, Springer, Cham (2018).
  • [11] W. Roundi, A. El Mahi, A. El Gharad, J.-L. Rebiere, Appl. Acoust. 132, 124-134 (2018). DOI: https://doi.org/10.1088/1742-6596/2125/1/012036
  • [12] D.Y. Jung, Y. Mizutani, A. Todoroki, Y. Suzuki, Open J. Compos. Mater. 7, 117-129 (2017). DOI: https://doi.org/10.4236/ojcm.2017.73007
  • [13] M.V.M.S. Rao, K.J.P. Lakshmi, Curr. Sci. 89, 1577-1582 (2005).
  • [14] B. Gutenberg, C.F. Richter, Seismicity of the Earth and Associated Phenomena, Princeton University Press, Princeton (1954).
  • [15] A.Y. Ng, M. Jordan, Y. Weiss, Adv. Neural Inf. Process. Syst. 14, 849-856 (2001).
  • [16] https://www.mathworks.com/help/stats/spectralcluster.html, accessed: 17.04.2022
  • [17] X. He, D. Cai, P. Niyogi, Adv. Neural Inf. Process. Syst. 18, 507-514 (2005).
  • [18] A. Ichenihi, W. Li, Y. Gao, Y. Rao, Appl. Acoust. 182, 1-10 (2021). DOI: https://doi.org/10.1016/j.apacoust.2021.108184
  • [19] L. Kaufman, P.J. Rousseeuw, Finding groups in data: An introduction to cluster analysis, John Wiley & Sons, New Jersey (1990).
  • [20] S. Chaimontree, K. Atkinson, F. Coenen, Adv. Data Minining and App. 48-59 (2010). DOI: https://doi.org/10.1007/978-3-642-17316-5_5
  • [21] A. Loukidis, D. Triantis, I. Stavrakas, E.D. Pasiou, S.K. Kourkoulis, Mat Design Process Comm. 1-9. (2020), DOI: https://doi.org/10.1002/mdp2.176
  • [22] S. Colombo, I.G. Main, M.C. Forde, J. Mater. Civ. Eng. 15, 280-286 (2003). DOI: https://doi.org/10.1061/(ASCE)0899-1561(2003)15:3(280)
  • [23] D. Jung, W.-R. Yu, W. Na, Compos. Commun. 22, 1-8 (2020), DOI: https://doi.org/10.1016/j.coco.2020.100499
  • [24] M. Saeedifar, D. Zarouchas, Compos. B. Eng. 195, 1-21 (2020). DOI: https://doi.org/10.1016/j.compositesb.2020.108039
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8dfeb6c2-967c-4074-b400-b7676617bcdd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.