PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Scaling properties of the Mw7.0 Samos (Greece), 2020 aftershock sequence

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
On October 30, 2020, a strong and shallow earthquake (Mw=7.0) hit Samos, an island on the eastern edge of the Aegean Sea (Greece). The epicenter was located on the north ofshore of the Greek island of Samos. The goal of our work is to provide a frst analysis of the scaling properties observed in the aftershock sequence as reported until December 31, 2020, as numerous seismic clusters activated. Our analysis is focused on the main of the clusters observed in the East area of the activated fault zone and strongly related with the mainshock’s fault. The aftershock sequence follows the Omori law with a value of p ≈ 1.01 for the main cluster which is remarkably close to a logarithmic evolution. The analysis of interevent times distribution, based on non-extensive statistical physics indicates a system in an anomalous equilibrium with a crossover from anomalous (q>1) to normal (q=1) statistical mechanics, as great interevent times approached. A discussion of the crossover observed, is given in terms of superstatistics. In addition, the obtained value q ≈ 1.67 suggests a system with one degree of freedom. Furthermore, a scaling of the migration of aftershock zone as a function of the logarithm of time is discussed in terms of rate strengthening rheology that govern the evolution of afterslip process.
Czasopismo
Rocznik
Strony
1067--1084
Opis fizyczny
Bibliogr. 93 poz.
Twórcy
  • Section of Geophysics – Geothermics, Department of Geology and Geoenvironment, National and Kapodistrian University of Athens, 15784 Panepistimiopolis, Athens, Greece
  • Institute of Physics of Earth’s Interior and Geohazards, UNESCO Chair on Solid Earth Physics and Geohazards Risk Reduction, Hellenic Mediterranean University Research Center, Grete, Greece
  • Section of Geophysics – Geothermics, Department of Geology and Geoenvironment, National and Kapodistrian University of Athens, 15784 Panepistimiopolis, Athens, Greece
  • Institute of Physics of Earth’s Interior and Geohazards, UNESCO Chair on Solid Earth Physics and Geohazards Risk Reduction, Hellenic Mediterranean University Research Center, Grete, Greece
Bibliografia
  • 1. Ambraseys N (2009) Earthquakes in the Mediterranean and middle east: a multidisciplinary study of seismicity up to 1900. Cambridge University Press, Cambridge
  • 2. Ariyoshi K, Matsuzawa T, Hasegawa Α (2007a) The key frictional parameters controlling spatial variations in the speed of postseismic-slip propagation on a subduction plate boundary. Earth Planet Sci Lett 256:136–146. https://doi.org/10.1016/j.epsl.2007.01.019
  • 3. Ariyoshi K, Matsuzawa T, Hino R, Hasegawa Α (2007b) Triggered non-similar slip events on repeating earthquake asperities: results from 3D numerical simulations based on a friction law. Geophys Res Lett 34:L02308. https://doi.org/10.1029/2006GL028323
  • 4. Bassin C, Laske G, Masters G (2000) The current limits of resolution for surface wave tomography in North America. EOS Trans AGU 81:F897
  • 5. Beck C (2001) Dynamical foundations of nonextensive statistical mechanics. Phys Rev Lett 87(18):180–601
  • 6. Beck C (2004) Superstatistics: theory and applications. Continuum Mech Thermodyn 16(3):293–304
  • 7. Beck C (2006) Superstatistical Brownian motion. Prog Theor Phys Suppl 162:29–36
  • 8. Beck C, Cohen EGD (2003) Superstatistics. Phys A 322:267–275
  • 9. Beeler NM, Simpson RW, Hickman SH, Lockner DA (2000) Pore fluid pressure, apparent friction, and Coulomb failure. J Geophys Res 105:25533–25542
  • 10. Caputo R, Pavlides S (2013) The Greek Database of seismogenic sources (GreDaSS), Version 2.0.0: A compilation of potential seismogenic sources (M > 5.5) in the Aegean region. https://doi.org/10.15160/unife/gredass/0200
  • 11. Caputo R, Chatzipetros A, Pavlides S, Sboras S (2012) The Greek database of seismogenic sources (GreDaSS): state-of-the-art for northern Greece. Ann Geophys 55(5):859–894
  • 12. Chatzipetros A, Kiratzi A, Sboras S, Zouros N, Pavlides S (2013) Active faulting in the north eastern Aegean Sea Islands. Tectonophysics 106:597–598. https://doi.org/10.1016/j.tecto.2012.11.026
  • 13. Chelidze T, Vallianatos F, Telesca L (2018) Complexity of seismic time series: measurement and application. Elsevier, Amsterdam
  • 14. Das S, Scholz C (1981) Theory of time-dependent rupture in the Earth. J Geophys Res 86:6039–6051
  • 15. Dieterich JH (1994) A constitutive law for rate of earthquake production and its application to earthquake clustering. J Geophys Res 99:2601–2618
  • 16. Evelpidou N, Pavlopoulos K, Vouvalidis K, Syrides G, Triantaphyllou M, Karkani A, Paraschou T (2019) Holocene palaeogeographical reconstruction and relative sea-level changes in the southeastern part of the island of Samos. Geoscience 351:451–460
  • 17. Eyring H (1935) The activated complex in chemical reactions. J Chem Phys. https://doi.org/10.1063/1.1749604
  • 18. Feltzer KR, Brodsky E (2006) Decay of aftershock density with distance indicates triggering by dynamic stress. Nature 44:735–738
  • 19. Frank WB, Poli P, Perfettini H (2017) Mapping the rheology of the Central Chile subduction zone with aftershocks. Geophys Res Lett. https://doi.org/10.1002/2016GL072288
  • 20. Ganas A, Parsons T (2009) Three-dimensional model of Hellenic Arc deformation and origin of the Cretan uplift. J Geophys Res Solid Earth 114:B06404. https://doi.org/10.1029/2008JB005599
  • 21. Ganas A, Elias P, Briole P, Tsironi V, Valkaniotis S, Escartin J, Karasante I, Efstathiou E (2020) Fault responsible for Samos earthquake identified. Temblor 10
  • 22. Gürer ÖF, Sanğu E, Özburan M, Gürbüz A, Sarica-Filoreau N (2013) Complex basin evolution in the Gökova Gulf region: implications on the Late Cenozoic tectonics of southwest Turkey. Int J Earth Sci. https://doi.org/10.1007/s00531-013-0909-1
  • 23. Gutenberg B, Richter CF (1954) Magnitude and energy of earthquakes. Ann Geofis 9:1–15
  • 24. Hanks T, Wyss M (1972) The use of body wave spectra in the determination of seismic source parameters. Bull Seism Soc Am 62:561–589
  • 25. Harris RA (1998) Introduction to special section: stress triggers, stress shadows, and implications for seismic hazard. J Geophys Res 103–24:347–358
  • 26. Helmstetter A, Sornette D (2002) Diffusion of epicenters of earthquake aftershocks, Omori’s law, and generalized continuous-time random walk models Phys. Rev E 66:061104–061111
  • 27. Henry C, Das S (2001) Aftershock zones of large shallow earthquakes: fault dimensions, aftershock area expansion and scaling relations. Geophys J Int. https://doi.org/10.1046/j.1365-246X.2001.00522.x
  • 28. Ikari MJ, Carpenter BM, Marone C (2016) A microphysical interpretation of rate-and state-dependent friction for fault gouge. Geochem Geophys Geosyst. https://doi.org/10.1002/2016GC006286
  • 29. Ji C, Wald DJ, Helmberger DV (2002) Source description of the 1999 Hector Mine, California earthquake; Part I: Wavelet domain inversion theory and resolution analysis. Bull Seism Soc Am 92–4:1192–1207
  • 30. Kantiranis N, Stamatakis M, Filippidis A, Squires C (2004) The uptake ability of the clinoptilolitic tuffs of Samos Island, Greece. Bull Geol Soc XXXVI:89–96
  • 31. Karakostas VG, Tan O, Kostoglou A, Papadimitriou EE, Bonatis P (2020) Seismotectonic implications of the 2020 Samos, Greece, M7.0 mainshock based on high–resolution aftershocks relocation, source slip model, and previous microearthquake activity. Acta Geophys (Submitted)
  • 32. Kassaras I, Kapetanidis V, Ganas A, Tzanis A, Kosma C, Karakonstantis A, Valkaniotis S, Chailas S, Kouskouna V, Papadimitriou P (2020) The new seismotectonic atlas of Greece (v1.0) and its implementation. Geosciences 10(11):447
  • 33. Kato N (2007) Expansion of aftershock areas caused by propagating post-seismic sliding. Geophys J Int 168:797–808. https://doi.org/10.1111/j.1365-246X.2006.03255.x
  • 34. Kato A, Obara K (2014) Step-like migration of early aftershocks following the 2007 Mw 6.7 Noto-Hanto earthquake, Japan. Geophys Res Lett. https://doi.org/10.1002/2014GL060427
  • 35. Kato A, Igarashi T, Obara K (2014) Detection of a hidden Boso slow slip event immediately after the 2011 Mw9.0 Tohoku-Oki earthquake, Japan. Geophys Res Lett. https://doi.org/10.1002/2014GL061053
  • 36. Kilb D, Gomberg J, Bodin P (2002a) Triggering of earthquake aftershocks by dynamic stresses. Nature 408:570–574
  • 37. Kilb D, Gomberg J, Bodin P (2002b) Aftershock triggering by complete Coulomb stress changes. JGR Solid Earth. https://doi.org/10.1029/2001JB000202
  • 38. King GC, Stein R, Lin J (1994) Static stress changes and the triggering of earthquakes. Bull Seismol Soc Am 84(3):935–953
  • 39. Kiratzi Α (2002) Stress tensor inversion along the westernmost North Anatolian Fault Zone and its continuation into the North Aegean Sea. Geophys J Int 151:360–376. https://doi.org/10.1046/j.1365-246X.2002.01753.x
  • 40. Kiratzi A (2014) Mechanisms of earthquakes in Aegean. In: Beer M, Kougioumtzoglou IA, Patelli E, Siu-Kui AI (eds) Encyclopedia of earthquake engineering. Springer, Berlin. https://doi.org/10.1007/978-3-642-36197-5_299-1
  • 41. Kouskouna V, Sakkas G (2013) The University of Athens hellenic macroseismic database (HMDB.UoA): historical earthquakes. J Seismol 17(4):1253–1280
  • 42. Kurtulus C, Doğan B, Sertçelik F, Canbay MM, Küçük HM (2009) Determination of the tectonic evolution of the Edremit Gulf Based on seismic reflection studies. Mar Geophys Res. https://doi.org/10.1007/s11001-009-9072-2
  • 43. Lekkas E, Mavroulis S, Gogou Μ, Papadopoulos GA, Triantafyllou I, Katsetsiadou KN, Kranis H, Skourtsos E, Carydis P, Voulgaris N, Papadimitriou P, Kapetanidis V, Karakonstantis A, Spingos I, Kouskouna V, Kassaras I, Kaviris G, Pavlou K, Sakkas V, Karatzetzou A. Evelpidou N. Karkani E. Kampolis I, Nomikou P, Lambridou D, Krassakis P, Foumelis M, Papazachos C, Karavias A, Bafi D, Gatsios T, Markogiannaki O, Parcharidis I, Ganas A, Tsironi V, Karasante I, Galanakis D, Kontodimos K, Sakellariou D, Theodoulidis N, Karakostas C, Lekidis V, Makra K, Margaris V, Morfidis K, Papaioannou C, Rovithis E, Salonikios T, Kourou A, Manousaki M, Thoma T, Κarveleas N (2020) The October 30, 2020 M 6.9 Samos (Greece) earthquake. Newsletter of Environmental, Disaster and Crises Management Strategies, 21, ISSN 2653‐9454, https://doi.org/10.13140/RG.2.2.13630.10561
  • 44. Lippiello E, de Arcangelis L, Godano C (2009) Role of static stress diffusion in the spatiotemporal organization of aftershocks. Phys Rev Lett 103:038501–038511
  • 45. Lippiello E, Giacco F, Marzocchi W, Godano C, de Arcangelis L (2015) Mechanical origin of aftershocks. Sci Rep 5:15560
  • 46. Lippiello E, Cirillo A, Godano C, Papadimitriou E, Karakostas V (2016) Real-time forecast of aftershocks from a single seismic station signal. Geophys Res Lett 43(12):6252–6258
  • 47. Lippiello E, Cirillo A, Godano C, Papadimitriou E, Karakostas V (2019) Post seismic catalog incompleteness and aftershock forecasting. Geosciences 9(8):355
  • 48. Makropoulos K, Kaviris G, Kouskouna V (2012) An extended earthquake catalogue for Greece and adjacent areas since 1900, enriched with the Mw addition. Nat Hazards Earth Syst Sci 12:1–6
  • 49. Margaris BN, Hatzidimitriou PM (2002) Source spectral scaling and stress release estimates using strong-motion records in Greece. Bull Seismol Soc Am 92:1040–1059
  • 50. Mayorga EF, Sánchez JJ (2016) Modelling of Coulomb stress changes during the great (Mw=8.8) 1906 Colombia-Ecuador earthquake. J South Am Earth Sci 70:268–278. https://doi.org/10.1016/j.jsames.2016.05.009
  • 51. McKenzie D (1978) Active tectonics of the Alpine-Himalayan belt: The Aegean Sea and surrounding regions. Geophys J Int 55:217–254. https://doi.org/10.1007/s10950-013-9390-3
  • 52. Meng X, Peng Z (2016) Increasing lengths of aftershock zones with depths of moderate-size earthquakes on the San Jacinto Fault suggests triggering of deep creep in the middle crust. Geophys J Int 204:250–261
  • 53. Mercier JL, Sorel D, Vergely P, Simeakis K (1989) Extensional tectonic regimes in the Aegean basins during the Cenozoic. Basin Res 2:49–71
  • 54. Obana K, Takahashi T, No T, Kaiho Y, Kodaira S, Yamashita M et al (2014) Distribution and migration of aftershocks of the 2010 Mw7.4 Ogasawara Islands intraplate normal-faulting earthquake related to a fracture zone in the Pacific plate. Geochem Geophys Geosyst 15:1363–1373
  • 55. Ogata Y, Katsura K (2006) Immediate and updated forecasting of aftershock hazard. Geophys Res Lett 33:L10305. https://doi.org/10.1029/2006GL025888
  • 56. Omori F (1894) On the after-shocks of earthquakes. J Colloid Sci 7:111–200
  • 57. Papadimitriou E, Karakostas V, Mesimeri M, Chouliaras G, Kourouklas Ch (2017) The M6.7 17 November 2015 Lefkada (Greece) earthquake: structural interpretation by means of aftershock analysis. Pure Appl Geophys 174:3869–3888. https://doi.org/10.1007/s00024-017-1601-3,2017
  • 58. Papadimitriou P, Kapetanidis V, Karakonstantis A, Spingos I, Kassaras I, Sakkas V, Kouskouna V, Karatzetzou A, Pavlou K, Kaviris G, Voulgaris N (2020) First results on the M = 6.9 Samos earthquake of 30 October 2020. Bull Geol Soc Greece 56(1):251–279. https://doi.org/10.12681/bgsg.25359
  • 59. Papazachos BC, Papazachou CB (2003) The earthquakes of Greece. Ziti, Thessaloniki
  • 60. Perfettini H, Avouac JP (2004) Postseismic relaxation driven by brittle creep: A possible mechanism to reconcile geodetic measurements and the decay rate of aftershocks, application to the Chi-Chi earthquake. Taiwan J Geophys Res 109:B02304
  • 61. Perfettini H, Frank WB, Marsan D, Bouchon M (2018) A model of aftershock migration driven by afterslip. Geophys Res Lett. https://doi.org/10.1002/2017GL076287
  • 62. Rice J, Cleary M (1976) Some basic stress diffusion solutions for fluid saturated elastic porous media with compressible constituents. Rev Geophys 14:227–241
  • 63. Sboras S (2012) The greek database of seismogenic sources: seismotectonic implications for North Greece. Desertation, University of Ferrara
  • 64. Scholz C (1968) Microfractures, aftershocks, and seismicity. Bull Seismol Soc Am 58:1117–1130
  • 65. Shcherbakov R, Yacovlev G, Turcotte DL, Rundle JB (2005a) Model for distribution of aftershocks interoccurrence times. Phys Rev Lett 95:218501
  • 66. Shcherbakov R, Turcotte DL, Rundle JB (2005b) Aftershock statistics. Pure Appl Geophys 162:1051–1076. https://doi.org/10.1007/s00024-004-2661-8
  • 67. Stamatakis M (1989) Authigenic silicates and silica polymorphs in the Miocene saline-alkaline deposits of the Karlovassi basin, Samos Island, Greece. Econ Geol 84:788–798
  • 68. Stein RS (1999) The role of stress transfer in earthquake occurrence. Nature 402(6762):605–609
  • 69. Stein RS, King GCP, Lin J (1994) Stress triggering of the 1994 M=6.7 Northridge, California, earthquake by its predecessors. Science 265:1432–1435
  • 70. Tan O, Papadimitriou EE, Pabucçu Z et al (2014) A detailed analysis of microseismicity in Samos and Kusadasi (Eastern Aegean Sea) areas. Acta Geophys 62:1283–1309
  • 71. Tang CC, Lin CH, Peng Z (2014) Spatial-temporal evolution of early aftershocks following the 2010 ML6.4 Jiashian earthquake in southern Taiwan. Geophys J Int 199:1772–1783
  • 72. Telesca L (2012) Maximum likelihood estimation of the nonextensive parameters of the earthquake cumulative magnitude distribution. Bull Seismol Soc Am 102:886–891
  • 73. Toda S, Stein RS (2003) Toggling of seismicity by the 1997 Kagoshima earthquake couplet: A demonstration of time-dependent stress transfer. J Geophys Res 108:2567. https://doi.org/10.1029/2003JB002527
  • 74. Toda S, Stein RS, Reasenberg PA, Dieterich JH, Yoshida A (1998) Stress transferred by the 1995, Mw = 6.9 Kobe, Japan, shock: effect on aftershocks and future earthquake probabilities. J Geophys Res 103(B10):24543–24565
  • 75. Toda S, Stein RS, Richards-Dinger K, Bozkurt SB (2005) Forecasting the evolution of seismicity in southern California: animations built on earthquake stress transfer. J Geophys Res 110(B5):B05S16. https://doi.org/10.1029/2004JB003415
  • 76. Toda S, Stein RS, Sevilgen V, Lin J (2011) Coulomb 3.3 Graphic‐rich deformation and stress‐change software for earthquake, tectonic, and volcano research and teaching‐user guide. U.S. Geological Survey Open‐File Report 2011‐1060, pp. 63. http://pubs.usgs.gov/of/2011/1060/
  • 77. Tsallis C (2009a) Introduction to nonextensive statistical mechanics: approaching a complex world. Springer, Berlin
  • 78. Tsallis C (2009b) Nonadditive entropy and nonextensive statistical mechanics—An overview after 20 years. Braz J Phys 39:337–356
  • 79. Tur H, Yaltırak C, Elitezb İ, Sarıkavakc KT (2015) Pliocene-Quaternary tectonic evolution of the Gulf of Gökova, southwest Turkey. Tectonophysics. https://doi.org/10.1016/j.tecto.2014.11.008
  • 80. Utsu T (1961) A statistical study on the occurrence of aftershocks. Geo Phys 30:521–605
  • 81. Utsu T, Ogata Y, Matsu’ura RS (1995) The centenary of the Omori formula for a decay law of aftershock activity. J Phys Earth 43:1–33
  • 82. Vallianatos F (2011) A non-extensive statistical physics approach to the polarity reversals of the geomagnetic field. Phys A 390:1773–1778
  • 83. Vallianatos F, Sammonds P (2013) Evidence of non-extensive statistical physics of the lithospheric instability approaching the 2004 Sumatran-Andaman and 2011 Honshu mega-earthquakes. Tectonophysics. https://doi.org/10.1016/j.tecto.2013.01.009
  • 84. Vallianatos F, Michas G, Papadakis G, Sammonds P (2012) A non-extensive statistical physics view to the spatiotemporal properties of the June 1995, Aigion earthquake (M6.2) aftershock sequence (West Corinth rift, Greece). Acta Geophys 60:758–768
  • 85. Vallianatos F, Karakostas V, Papadimitriou E (2014) A Non-extensive statistical physics view in the spatiotemporal properties of the 2003 (Mw62) Lefkada, Ionian Island Greece, Aftershock Sequence. Pure Appl Geophys 171(7):1343–1534. https://doi.org/10.1007/s00024-013-0706-6
  • 86. Vallianatos F, Papadakis G, Michas G (2016a) Generalized statistical mechanics approaches to earthquakes and tectonics. Proc R Soc A 472–497
  • 87. Vallianatos F, Michas G, Papadakis G (2016) A description of seismicity based on non-extensive statistical physics: a review. In: D’Amico S (ed) Earthquakes and their impact on society. Springer, Heidelberg, pp 1–42
  • 88. Vallianatos F, Michas G, Papadakis G (2018) Nonextensive statistical seismology: an overview. In: Chelidze T, Vallianatos F, Telesca L (eds) Complexity of seismic time series. Elsevier, Amsterdam, pp 25–60
  • 89. Vassilopoulos A, Evelpidou N, Tziritis E, Boglis A (2008) Wetlands the pattern of Samos Island. University of Athens
  • 90. Wiemer S (2001) A software package to analyze seismicity: ZMAP. Seismol Res Lett 72(3):373–382
  • 91. Wiemer S, Wyss M (2000) Minimum magnitude of completeness in earthquake catalogs: Examples from Alaska, the western US and Japan. Bull Seism Soc Am 90:859–869
  • 92. Wu J, Hu Q, Li W, Lei D (2016) Study on Coulomb stress triggering of the April 2015 M7.8 Nepal earthquake sequence. Int J Geophys. https://doi.org/10.1155/2016/7378920
  • 93. Xiong X, Shan B, Zhou YM, Wei SJ, Li YD, Wang R, Zheng Y (2017) Coulomb stress transfer and accumulation on the Sagaing Fault, Myanmar, over the past 110 years and its implications for seismic hazard. Geophys Res Lett. https://doi.org/10.1002/2017GL072770
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8df472ad-62cb-42ec-bb56-422c0b1fb894
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.