Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
To construct resilient structures, systems and sustainable buildings, capable of enduring fatigue, inclement weather, and seismic activity, researchers are actively seeking effective solutions to minimize vibrations and cyclic loading. Although these factors may not have immediate effects, they contribute to residual deformation in structures that gradually grows over time. For this reason, shape memory alloy (SMA) can be used as a perfect damper to dissipate the mechanical load in structures construction and buildings. The SMA actuators characterized by several thermo-mechanical functions, they are generally used in different applications as Mechatronics, Biomedical, Mechanical engineering and building systems. This study aims to adapt SMA actuator with structures for construction and buildings, in order to ensure a high displacement and vigilance taking into account fatigue phenomena to repulse mechanical fatigue and fretting. Accordingly, a thermomechanical analysis has been developed using finite element techniques to describe shape memory alloys' behavior and can integrate these material as a thermomechanical actuator dampers in building engineering systems. Furthermore, the suggested model elucidates the actuator's thermomechanical response, showcasing its adaptable behavior to both superelasticity and the shape memory effect within the desired structure in the building. Thus, the numerical findings affirm the efficacy of the proposed design that based on shape memory materials in addressing thermomechanical fatigue within buildings, concurrently enhancing structural resilience against mechanical fatigue. The primary outcome of this study is the successful preservation of the Ni-Ti superelastic response within the proposed system. This preservation is validated through cycling variations of up to 7.6% strain, significantly surpassing the requirements typically mandated for applications in earthquake engineering.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
186--194
Opis fizyczny
Bibliogr. 22 poz., fig., tab.
Twórcy
autor
- LM2I, ENSEM, Hassan II of Casablanca, Morocco
autor
- LMISI Laboratory, FSTS, Hassan First University of Settat, Morocco
autor
- LMISI Laboratory, FSTS, Hassan First University of Settat, Morocco
Bibliografia
- 1. Silva G.C., Silvestre F.J., and Donadon M.V., A nonlinear aerothermoelastic model for slender composite beam-like wings with embedded shape memory alloys, Compos. Struct., 2021; 287: 115367, doi: 10.1016/j.compstruct.2022.115367.
- 2. Eckert J.J., Barbosa T.P., da Silva S.F., Silva F.L., Silva L.C.A., and Dedini F.G., Electric hydraulic hybrid vehicle powertrain design and optimization based power distribution control to extend driving range and battery life cycle, Energy Convers. Manag., 2022; 252, doi: 10.1016/j.enconman.2021.115094.
- 3. Saputo S., Sellitto A., Battaglia M., Sebastiano V., and Riccio A., Numerical simulation of the mechanical behaviour of shape memory alloys based actuators, Mater. Today Proc., 2019; 34: 57–64, doi: 10.1016/j.matpr.2020.01.185.
- 4. Zareie S., Seethaler R.J., Issa A.S., and Zabihollah A., Recent advances in the applications of SMA in civil infrastructures: A review, Structures, 2020; 27: 1535–1550, doi: 10.1016/j.istruc.2020.05.058.
- 5. Karna P., Prabu S.S.M., Karthikeyan S.C., Mithun R., Jayachandran S., Resnina N., Belyaev S., Palani I.A., Show more, Investigations on laser actuation and life cycle characteristics of NiTi shape memory alloy bimorph for non-contact functional applications, Sensors Actuators, A Phys., 2021; 321: 112411, doi: 10.1016/j.sna.2020.112411.
- 6. Abraik E. and Asteetah A., Parametric analysis of slotted concrete shear walls reinforced with shape memory alloy bars, Case Stud. Constr. Mater., 2022; 16: e00806, doi: 10.1016/j.cscm.2021.e00806.
- 7. Das S. and Tesfamariam S., Multiobjective design optimization of multi-outrigger tall-timber building: Using SMA-based damper and Lagrangian model, J. Build. Eng., 2022; 51: 104358, doi: 10.1016/j. jobe.2022.104358.
- 8. Ju X., Z Moumni, Zhang Y., Zhang F., Zhu J., Chen Z., Zhang W., A multi-physics, multi-scale and finite strain crystal plasticity-based model for pseudoelastic NiTi shape memory alloy, Int. J. Plast., 2022; 148: 103146, doi: 10.1016/j.ijplas.2021.103146.
- 9. Petrini L. and Bertini, A., A three-dimensional phenomenological model describing cyclic behawior of SMA,” Int. J. Plast., 2020; 125: 348–373, doi: 10.1016/j.ijplas.2019.10.008.
- 10. Fujino Y., Siringoringo D.M., Ikeda Y., Nagayama T., and Mizutani T., Research and Implementations of Structural Monitoring for Bridges and Buildings in Japan, Engineering, 2019; 5(6): 1093–1119, doi: 10.1016/j.eng.2019.09.006.
- 11. Theodore A.J. and Bishay P.L., Experimental analysis of fiber-reinforced laminated composite plates with embedded SMA wire actuators, Compos. Struct., 2021; 292: 115678, 2022, doi: 10.1016/j. compstruct.2022.115678.
- 12. Gideon A.M. and Milan R., Effects of nitinol on the ductile performance of ultra high ductility fibre reinforced cementitious composite, Case Stud Constr. Mater., 2021; 15: e00582, doi: 10.1016/j. cscm.2021.e00582.
- 13. Guan J.H., Pei Y.C., Zhang H., and Wu J.T., An investigation on the driving characteristics continuous measurement of reverse deformation SMA springs, Meccanica, 2022; 57(2): 297–311, doi: 10.1007/ s11012-021-01421-4.
- 14. Riad A., Alhamany A., and Benzohra M., The shape memory alloy actuator controlled by the Sun’s radiation, Mater. Res. Express, 2017; 4(7), doi: 10.1088/2053-1591/aa75bb.
- 15. Karamooz-Ravari M.R., Taheri Andani M., Kadkhodaei M., Saedi S., Karaca H., and Elahinia M., Modeling the cyclic shape memory and superelasticity of selective laser melting fabricated NiTi, Int. J. Mech. Sci., 2018; 138–139: 54–61, doi: 10.1016/j. ijmecsci.2018.01.034.
- 16. Abdelilah A., Comportement En Fatigue Des Alliages A Memoire De Forme Cas Du Cuznal, Université Mohammed V – Agdal Faculté Des Sciences Service, 2005.
- 17. Fang C., Liang D., Zheng Y., Yam M.C.H., and Sun R., Rocking bridge piers equipped with shape memory alloy (SMA) washer springs, Eng. Struct., 2019; 214: 110651, doi: 10.1016/j.engstruct.2020.110651.
- 18. Alipour A., Kadkhodaei M., and Safaei M., Design, analysis, and manufacture of a tension–compression self-centering damper based on energy dissipation of pre-stretched superelastic shape memory alloy wires, J. Intell. Mater. Syst. Struct., 2017; 28(15): 2129–2139, doi: 10.1177/1045389X16682839.
- 19. Ravari M.R.K., Kadkhodaei M., and Ghaei A., A microplane constitutive model for shape memory alloys considering tension – compression asymmetry, Smart Mater. Struct., 2015; 24(7): 75016, doi: 10.1088/0964-1726/24/7/075016.
- 20. Huang B., Xu B., Tang S., Wang X., Tan K., Wang C., Wang Q., Effect of aspect ratio on the elastocaloric effect and its cyclic stability of nanocrystalline NiTi shape memory alloy, J. Mater. Res. Technol., 2023; 25: 6288–6302, doi: 10.1016/j.jmrt.2023.07.058.
- 21. Ashrafi M.J., Constitutive modeling of shape memory alloys under cyclic loading considering permanent strain effects, Mech. Mater., 2019; 129: 148–158, doi: 10.1016/j.mechmat.2018.11.013.
- 22. Varkani M.M., Bidgoli M.R., and Mazaheri H., Mathematical modeling and dynamic response of concrete frames containing shape memory alloys under seismic loads, Appl. Math. Model., 2022; 111: 590–609, doi: 10.1016/j.apm.2022.07.004
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8def2b04-4ffb-4953-8843-d92764e5463a