Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, the effect of a fractional order of time-derivatives occurring in fractional heat conduction models on the temperature distribution in a composite sphere is investigated. The research concerns heat conduction in a sphere consisting of a solid sphere and a spherical layer which are in perfect thermal contact. The solution of the problem with a classical Robin boundary condition and continuity conditions at the interface in an analytical form has been derived. The fractional heat conduction is governed by the heat conduction equation with the Caputo time-derivative, a Robin boundary condition and a heat flux continuity condition with the Riemann-Liouville derivative. The solution of the problem of non-local heat conduction by using the Laplace transform technique has been determined, and the temperature distribution in the sphere by using a method of numerical inversion of the Laplace transforms has been obtained.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
339--349
Opis fizyczny
Bibliogr. 37 poz., rys., tab.
Twórcy
autor
- Czestochowa University of Technology, Institute of Mathematics, Częstochowa, Poland
autor
- Czestochowa University of Technology, Institute of Mathematics, Częstochowa, Poland
Bibliografia
- 1. Abate J., Valkó P.P., 2004, Multi-precision Laplace transform inversion, International Journal for Numerical Methods in Engineering, 60, 979-993
- 2. Abbas I.A., 2012, On a thermoelastic fractional order model, Journal of Physics, 1, 2, 24-30
- 3. Atanacković T.M., Pilipović S., Stanković B., Zorica D., 2014, Fractional Calculus with Applications in Mechanics, John Wiley & Sons, New York
- 4. Atangana A., Bildik N., 2013, The use of fractional order derivative to predict the groundwater flow, Mathematical Problems in Engineering, Article ID 543026
- 5. Blasiak S., 2016, Time-fractional heat transfer equations in modeling of the non-contacting face seals, International Journal of Heat and Mass Transfer, 100, 79-88
- 6. Blaszczyk T., Ciesielski M., 2017, Numerical solution of Euler-Lagrange equation with Caputo derivatives, Advances in Applied Mathematics and Mechanics, 9, 173-185
- 7. Brzeziński D.W., Ostalczyk P., 2016, Numerical calculations accuracy comparison of the inverse Laplace transform algorithms for solution of fractional order differential equations, Nonlinear Dynamics, 84, 1, 65-77
- 8. Ciesielski M., Błaszczyk T., 2013, An approximation of the analytical solution of the fractional Euler-Lagrange equation, Journal of Applied Mathematics and Computational Mechanics, 12, 4, 23-30
- 9. Dalir M., Bashour M., 2010, Applications of fractional calculus, Applied Mathematical Sciences, 4, 21, 1021-1032
- 10. Diethelm K., 2010, The Analysis of Fractional Differential Equations, Springer-Verlag Berlin Heidelberg
- 11. Dimitrov Y., 2014, Numerical approximations for fractional differential equations, Journal of Fractional Calculus and Applications, 5, 38, 1-45
- 12. Dzieliński A., Sierociuk D., Sarwas G., 2010, Some applications of fractional order calculus, Bulletin of the Polish Academy of Sciences – Technical Sciences, 58, 4, 583-592
- 13. Gaver D.P. Jr., 1966, Observing stochastic processes and approximate transform inversion, Operational Research, 14, 444-459
- 14. Kilbas A., Srivastava H., Trujillo J., 2006, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam
- 15. Klimek M., 2009, On Solutions of Linear Fractional Differential Equations of a Variational Type, The Publishing Office of Czestochowa University of Technology, Czestochowa
- 16. Kuhlman K.L., 2013, Review of inverse Laplace transform algorithms for Laplace-space numerical approaches, Numerical Algorithms, 63, 2, 339-355
- 17. Kukla S., Siedlecka U., 2015, Laplace transform solution of the problem of time-fractional heat conduction in a two-layered slab, Journal of Applied Mathematics and Computational Mechanics, 14, 4, 105-113
- 18. Kukla S., Siedlecka U., 2017, An analytical solution to the problem of time-fractional heat conduction in a composite sphere, Bulletin of the Polish Academy of Sciences – Technical Sciences, 65, 2, 179-186
- 19. Leszczyński J.S., 2011, An Introduction to Fractional Mechanics, The Publishing Office of Czestochowa University of Technology, Czestochowa
- 20. Magin R.L., 2006, Fractional Calculus in Bioengineering, Begell House Publishers, Connecticut
- 21. Mainardi F., 2010, Fractional Calculus and Waves in Linear Viscoelasticity: an Introduction to Mathematical Models, Imperial College Press, London
- 22. Ning T. H., Jiang X. Y., 2011, Analytical solution for the time-fractional heat conduction equation in spherical coordinate system by the method of variable separation, Acta Mechanica Sinica, 27, 6, 994-1000
- 23. Ozis¸ik M.N. ¨ , 1993, Heat Conduction, Wiley, New York
- 24. Podlubny I., 1999, Fractional Differential Equations, Academic Press, San Diego
- 25. Povstenko Y., 2013a, Fractional heat conduction in an infinite medium with a spherical inclusion, Entropy, 15, 4122-4133
- 26. Povstenko Y., 2013b, Time-fractional heat conduction in an infinite medium with a spherical hole under Robin boundary condition, Fractional Calculus and Applied Analysis, 16, 2, 354-369
- 27. Povstenko Y., 2014, Fractional heat conduction in a semi-infinite composite body, Communications in Applied and Industrial Mathematics, 6, 1, e-482
- 28. Povstenko Y., 2015, Linear Fractional Diffusion-Wave Equation for Scientists and Engineers, Birkhauser, New York
- 29. Povstenko Y., Klekot J., 2017, The fundamental solutions to the central symmetric timefractional heat conduction equation with heat absorption, Journal of Applied Mathematics and Computational Mechanics, 16, 2, 101-112
- 30. Rahimy M., 2010, Applications of fractional differential equations, Applied Mathematical Sciences, 4, 50, 2453-2461
- 31. Raslan W.E., 2016, Application of fractional order theory of thermoelasticity to a 1D problem for a spherical shell, Journal of Theoretical and Applied Mechanics, 54, 1, 295-304
- 32. Sheng H., Li Y., Chen Y., 2011, Application of numerical inverse Laplace transform algorithms in fractional calculus, Journal of the Franklin Institute, 384, 315-330
- 33. Sumelka W., Blaszczyk T., 2014, Fractional continua for linear elasticity, Archives of Mechanics, 66, 3, 147-172
- 34. Sur A., Kanoria M., 2014, Fractional heat conduction with finite wave speed in a thermo-viscoelastic spherical shell, Latin American Journal of Solids and Structures, 11, 1132-1162
- 35. Valkó P.P., Abate J., 2004, Comparison of sequence accelerators for the Gaver method of numerical Laplace transform inversion, Computers and Mathematics with Applications, 48, 629-636
- 36. Zecova M., Terpak J., 2015, Heat conduction modeling by using fractional-order derivatives, Applied Mathematics and Computation, 257, 365-373
- 37. Zingales M., 2014, Fractional-order theory of heat transport in rigid bodies, Communications in Nonlinear Science and Numerical Simulation, 19, 3938-3953
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8dec30eb-e9c5-45c0-8b5d-bbd438df4bc8