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ABSTRACT: In the recent years, intelligent methods as artificial neural networks are successfully applied for
data analysis from different fields of the geosciences. One of the encountered practical problems is the
availability of gaps in the time series that prevent their comprehensive usage for the scientific and practical
purposes. The article briefly describes two types of the artificial neural network (ANN) architectures - Feed-
Forward Backpropagation (FFBP) and recurrent Echo state network (ESN). In some cases, the ANN can be used
as an alternative on the traditional methods, to fill in missing values in the time series. We have been conducted
several experiments to fill the missing values of daily sea levels spanning a 5-years period using both ANN
architectures. A multiple linear regression for the same purpose has been also applied. The sea level data are
derived from the records of the tide gauge Burgas, which is located on the western Black Sea coast. The
achieved results have shown that the performance of ANN models is better than that of the classical one and
they are very promising for the real-time interpolation of missing data in the time series.

1 INTRODUCTION omitted observations) that disrupts or makes it
impossible to use them for research and practical
purposes. In practice, different mathematical models
and methods for filling of ("recovery") missing values
are applied. Often, when these values are for a short
interval, the linear interpolation is enough.

Commonly used methods for reconstruction of the

The integration of various databases is a prerequisite
for studying and predicting different Earth’s
processes, like climate changes, sea level rise, etc.
Further analysis and modeling of the natural
phenomena suggest an updating, harmonization and

standardizing of the various measured parameters for
the preparation of scientifically based assessments
and forecasts. This requires the available primary
measurements and preliminary analyzed data to be
subjected to a qualitative and quantitative check.
Recent advances in processing of the large amounts of
data concern the developing of algorithms to extract
the hidden and potentially useful knowledge from
them, suggesting that they are complete and reliable.

One common problem in the time series analysis is
the presence of gaps (a sequence of missing values or

missing values in time series are:

1 Substitution by the mean value - new information
is not added to the time series as the Root Mean
Square Error (RMSE) is reduced;

2 Single linear, multiple linear or nonlinear
regression, with which the available information is
accounted, the dimensionality of the sample is
increased and the RMSE is reduced;

3 Multiple filling, the so-called Monte Carlo
algorithms with Markov chains in which the
missing value is filled with the estimated size
values;

225



4 Kalman filter - a recursive two-step method. It
allows processing of time series on the principle of
prediction-correction, etc.

If there is a long sequence of missing values, the
method used to fill gaps need to be chosen very
carefully due to its effect on the sub-sequential
analysis of time series. Any method that can be used
in such case has its advantages and disadvantages.
Sometimes, when missing data are not rare and they
are in different segments of the time series, a suitable
compromise between computational speed and
quality of results has to be made. The choice of
procedure depends mainly on the properties of time
series and the main purpose of their analysis.
Comparison of different fill-in methods of the missing
values in time series are presented in (Dergachev et
al., 2001; Kondrashov & Ghil, 2006; Moffat et al., 2007;
Musial et al., 2011).

Artificial neural networks (ANN), as innovative
approach greatly enhanced the opportunities for
analysis and treatment of information because they have
less restrictive requirements with respect to available
knowledge about the character of relationships among
processed data, functional models, type of distribution,
etc. They provide a rich, powerful and robust
nonparametric modeling framework with proven and
potential applications in many fields of the sciences. The
advantages of ANN encouraged many researchers to
use the neural network models in broad spectrum of
real-world applications. Sometimes, the ANNs are a
better alternative, either substitutive or complementary,
to the traditional computational schemes for solving
many scientific and engineering problems (e.g., Wenzel
& Schroter, 2010; Pashova & Popova, 2011). Multilayer
ANN with feed forward connections that are trained
using the backpropagation algorithm (Feed-Forward
Back-propagation Network - FFBP) is one of the first
neural architectures that are widely used for modeling
of nonlinear dependences (Rumelhart and Clelland,
1986; Allende et al., 2002). For modeling of dynamic
dependences, however, it is often needed to use
recurrent ANN (RNN). One such modern architecture,
called "echo" (Echo State Networks - ESN) offers
simplified training algorithm and become widely used
for studying the nonlinear dynamical dependencies
(Jaeger, 2003; Lukosevicius & Jaeger, 2009; Koprinkova-
Hristova et al., 2011). These ANNSs are recognized as the
best models for time series analysis and prediction
(Zang & Behera, 2012).

The near-shore sea level variations are of great
importance for studying the relative sea level change,
practical realization of the height reference surface in
geodesy, many coastal engineering applications, etc.
These variations are registered by tide gauges,
whose continuous registrations of the sea level
represent a superposition of many stochastic and
nonlinear processes. Missing observations in the
time series of such type of data are very common.
This requires the application of various methods of
interpolation and/or extrapolation, which allow
filling the incomplete time series with necessary
accuracy for further analysis. The article presents the
results obtained after applying two types of the
artificial neural networks and a multiple linear
regression (MLR) for filling gaps in the time series of
daily sea levels. Data from the tide gauge in Burgas,
which is located on the western Black Sea coast
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spanning the period 1985 - 1989 are analyzed to
model the maximum, mean and minimum sea levels.
Comparison of the performances of the two ANN and
MLR models for filling gaps in the daily sea levels is
also presented.

2 ARTIFICIAL NEURAL NETWORK MODELS
USED IN THE STUDY

Since the sea level variations can be represent as
nonlinear dynamic process, ANN architectures were
considered as appropriate candidates for its
modeling. Application of different approaches of
ANNSs applications for the sea level analysis can be
seen in (Tsai et al,, 2009; Pashova & Popova, 2011).
There are several network architectures, which can be
used for modeling and filling the missing values of
the sea levels. A multiple linear regression is another
method often used for filling the missing values in
time series. In this study we applied FFBP and ESN
architectures in comparison with MLR model. The
ANNSs and MLR performance were assessed in terms
of the root mean square error (RMSE) and the
correlation  coefficient R  (or coefficient of
determination R?).

2.1 Feed forward back-propagation (FFBP) ANN

Feed-forward (FF) or layered ANNSs are one of the
first neural network architectures with typical
structure is shown on Figure 1. They consist of several
consecutive layers of nonlinear units called neurons.
Connections are allowed only between neighbor
layers directed from the first (input) to the last
(output) layer. The specification of FF model structure
includes a determination of the number of the input
and the output neurons (depending on the specifics of
the function that will be modeled); a choice of the
number of hidden layers and the number of neurons
in each one of them, and of the non-linear processing
functions of all neurons (usually a kind of sigmoid-
shaped nonlinearity). “Neurons” in the first layer,
showed by squares, are not typical non-linear units.
They only distribute the input vector to the first
hidden layer (marked by circles on the Figure 1). It is
well known that usually one hidden layer is sufficient
to model any complex nonlinear dependence between
the input and output vector. The training algorithm of
this type of neural networks is usually performed
applying the error backpropagation (BP), from which
their popular name has been shortened to FFBP.

The output of each hidden layer of neurons is
calculated by nonlinear dependence of the linear
combination of outputs of the neurons in the previous
hidden layer:

x,(0)= (1) M

For the input and
dependences are:
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Figure1. Neural network with feed-forward back-

propagation (FFBP) architecture.

Here t denotes a discrete moment in time, Atf is
(sampling) discretization step and fis a monotonically
increasing function, wusually nonlinear sigmoid
(logistic sigmoid or hyperbolic tangent) for the
hidden layers and usually a linear function for the
output layer of the network.

This architecture represents a static dependence
model between its input and output vectors of the
network. To be able to model a dynamical process’
dependence, lines of time delay elements (briefly
TDL) are inserted at the network input, that keep
“memory” of the past states of the modeled process.

2.2 Echo state network (ESN)

Echo state networks (ESN) are a relatively new class
of RNNs that belong to the so called “reservoir”
approach (Lukosevicius & Jaeger, 2009). The main
idea of this approach consists in a generating of rich
“reservoir” of dynamic neurons with nonlinear
activation functions and with recurrent connections
between them. The network output is calculated as a
linear combination between current states of the
“reservoir” neurons. Training of this type of
architecture is simplified by setting the parameters of
the linear combination (i.e. the weights of the
connections between the “reservoir” and the output)
using the least squares algorithm. Hence the RNN
training is significantly faster and the application of
the recursive version of training algorithm allows on-
line training too.

Echo State Network (Jaeger, 2003) is a simplified
version of the “reservoir” architecture with sigmoid
output nonlinearity of the “reservoir” neurons
(usually hyperbolic tangens). Figure 2 shows the
structure of ESN network. Its output layer calculates a
linear combination between the current state of the
network input in(f) and the “reservoir” X(t) as
follows:

out(t)=w,, {;’;8} €)

out(t)
in(t)

Reservoir

\_

Figure 2. Echo state network (ESN) architecture.

Wou is n,, x(n, +n,) dimensional matrix, where
nout, nin and nx are the dimensions of the vectors out, in
and X respectively. The current state of “reservoir”
neurons depends on their previous state and on the

current network input:

X(¢)=tanh(W, in(t)+ W, X (t — At)) (4)

res

Here Win and Wrs are matrices containing the
weights of connections at the input and inside the
“reservoir” with corresponding dimensions n, xn,
and n, xn, . These matrices are randomly generated
and are not a subject to training. The recurrent
connections inside the “reservoir” create an effect of
“memory” about the network past states, that makes
such architecture a proper candidate for the modeling
of dynamic dependences. Its advantage in
comparison to the static layered architectures with
TDL neural networks at the input is that there is no
necessity to have a priory information about the
needed number of TDLs for a particular process that
will be modeled.

3 APPLICATION OF DIFFERENT MODELS FOR
FILLING UP MISSING DAILY SEA LEVELS

3.1 Handling incomplete time series of sea levels

Forecasting the sea level variations in real time is an
important activity in the design of coastal engineering
structures, decision-making related to navigation of
vessels and the construction of offshore platforms in
the Black Sea. The main sources of information for
studying these variations are the continually operated
tide gauges established on the sea coasts. Such
information is urgently needed to support the
development, calibration and improvement the
operational capacity of the integrated systems for
forecasting and early warning of dangerous natural
phenomena in the sea and coastal areas. Continuous
monitoring of the sea level along the Bulgarian Black
Sea coast is carried out since 1928 (Pashova & Popova,
2011). Since then, the data on average daily, monthly
and annual values of the sea level contain gaps with
different time duration. The presence of missing data
is due to various factors: technical reasons, failure of
recording equipment; interruption of the registration
due to defective recording equipment; misuse and
incorrect use of records by the field staff; etc. In
extreme events like storm surge or high waves the
continuous registrations are also terminated due to
technical limitations of equipment.
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To fill gaps in the time series of sea level the tidal
regime in the Black Sea has to be known a priori. The
missing values for different time periods are
completed for scientific and applied research
purposes. Restoration of gaps in observational data
used for modeling and forecasting of the natural
phenomena should be made at the earliest possible
stage of the processing of the original measurements.
The classical methods for modeling of the sea level
fluctuations (e.g. harmonic analysis) cannot always
represent the complex time-varying meteorological
effects on sea level, which are produced by weather
conditions like wind, atmospheric pressure, rainfall,
etc. Therefore, adaptation of the models in real-time is
needed, in order to account better for the time-
varying environmental changes.

3.2 FFBPand ESN

The structure of FFBP neural network model was
chosen after repeated testing for the optimal choice of
parameters (Pashova and Popova, 2011). For each
variable (daily maximum H_max, mean H_mean or
minimum H_min sea levels) an individual FFBP model
is trained. Increasing the number of neurons and the
number of delays requires more computation, and this
has a tendency to overfit the data when the numbers
are set too high, but it allows the ANN to solve more
complicated problems. After several tests, the best
number of tapped delay lines (TDLs) is determined to
be 6 based on the autocorrelation function of the daily
values. Hence the input vector for each model is
consisted of the previous 7 daily values of the modeled
variable, i. e. its size is 7. The output of the network
predicts its current value, i.e. its size is 1. The number
of neurons in the rest of layers is determined applying
the criteria of the minimum squared error and the
highest correlation coefficient between the observed
and modeling daily sea levels. The number of neurons
in the hidden layer was chosen based on the multiple
reruns of different structures of the FFBP models
(Pashova & Popova, 2011). One hidden layer is found
to be appropriate to model sea levels and the optimal
number of neurons in it was found to be 15 neurons.
Hence our FFBP model has 7:15:1 architecture. The
Matlab programming environment is used for training
FFBP models (Demuth & Beale, 2000; Gilat, 2011). The
standard training procedure divides the time series
randomly into 3 parts with ratio 70:15:15% for training,
testing and verification respectively. Training is done
with the Levenberg-Marquardt algorithm, which has
the fastest convergence for FFBP networks. The
criterion for stopping the iterations is when the error of
the sample for verification began to increase. This
model, evaluation criteria of its applicability and the
main characteristics of the time series of daily sea levels
and factors influencing the sea level change are
described in detail in previous studies presented in
(Pashova & Popova, 2011; Pashova et al., 2012).

The structure of the ESN model also contains 15
neurons in the "reservoir” to be comparable with the
FFBP ANN model. It was find that the difference in
the prediction results of sea level data between 15 and
100 neurons ware insignificant. To evaluate the effect
of "memory" of the "reservoir" two versions of ESN
model was trained - with 1 input and with 7 inputs
respectively for one step back in time and for 7 steps
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back in time for the modeled daily sea values of the
three variables. The training of the ESN model is
made using free available Matlab toolbox
(http://www .reservoir-computing.org/software).  In
comparison with the FFBP model the time series are
divided into training and test samples in a ratio of
85:15%. Since the ESN was trained by a non-iterative
procedure that applies linear regression with a single
representation of each element of the teaching sample,
there is no need to define stopping criteria for its
training.

In the case of batch training of ESN, the all training
data for model input are presented consecutively to
the network and the corresponding output is
calculated and collected. The weights of the output
connections are determined by solving linear
regression equation in one step using all network
input/output data. Hence the reservoir state “evolves”
with each new data as if the “gaps” are missing. In
the case of on-line training, each input of the training
data is presented to the network. The corresponding
output is calculated and the output weights are
adjusted using recursive least squares (RLS) method.
If “data gap” is reached, the predicted by model
output is used to replace the missing data at model
input. In this way the reservoir state depends on the
ESN model predictions and evolves in dependence on
the accumulated by the current moment knowledge
about the process dynamics. This will allows more
“realistic” predictions, especially for longer data gaps.

The outcomes after training of both types of ANN
models are directly dependent on the initial
conditions therefore 20 ESN and FFBP models were
generated and trained. The averaged mean squared
errors (MSE) of the simulation with all the data and
coefficients of regression R, as well as errors MSEb
and regression coefficients R» of the best-trained
models are presented in Table 1.

3.3 MLR model

The filling of the missing values of daily sea levels for
the same period for three time series of study have
been completed by the multiple linear regressions
(MLR using the following model:

e+ D)=, 5(O) + a,y(t =D+t a  y(t-s) (5

where J(t +1)is the predicted sea level by the MLR
model, which will be filled instead the missing daily
value, Y(f) is the current daily mean, and s is a
number of backward steps like in the case of ANN
models. The predicted missing value is a linear
combination of several independent variables - the
mean daily sea level and several daily values before
it. The unknown coefficients w1, o,...,as1 are
determined initially using all available values for the
daily sea levels for a 5-year period.

For filling of the missing daily values with
different length of gaps in the time series for all the
model types we proceed as follow: if the missing
values are several consecutive ones, than each
predicted by a model missing value is included as
known in the line of the 6 TDLs values used to predict
the next one; this operation is repeated moving



forward with one step while all the consistently
missing values are filled. This process continues until
the completion of all missing values for the relevant
period.

For all the models the least squares error was a
criterion that was minimized by the respective
training procedure used to estimate the unknown
parameters of the corresponding model. The
MATLAB codes are written to train and to test each
ANN and MLR model’s representation.

4 RESULTS AND DISCUSSION

In this study, the time series of observations of the
mean daily sea level is seen as a sequence of discrete
values trough regular intervals with the sampling
step At =1day . Here the daily maximum H_max,
mean H_mean and minimum H_min sea levels are
modeled, which are determined with millimeter
precision relatively to the "zero" point of the tide
gauge Burgas. To test the applicability of the ANN to
fill the missing values in the time series of daily sea
levels, the period from 1January 1985 to 31 December
1989 is selected. The required numbers of the values
in the three time series is totally 1826, 151 (8.3%) of
which are missing. Most of the data gaps include time
periods from 1 to 3-4 days up to 1 to 3 weeks for a
five-year analyzed period.

The results for the full 5-years period of study are
presented graphically on Fig. 1. After that for two
periods, covering two and three weeks with missing
values, the results are presented in details. On Fig. 2
(a, h) these periods are between 1050 and 1110 day
and between 1590 and 1660 day of observations
respectively. The observed daily sea levels, the
modeled, and the predicted by the three models are
depicted in details correspondingly for both periods.
In Table 1 the estimates of the MSE and correlation
coefficient R for all the models are given. These
estimates are obtained as results after filling of the
missing sea levels in the time series.

The mean value of MSE obtained from averaging
of the MSEs of all 20 trained FFBP models and the
MSEb, of the best model differ by 0.2-0.4. The
corresponding difference between the mean MSE
value and the MSEs of the best obtained ESN model is
an order of magnitude smaller. This can be explained
by the different algorithms used for training of the
two neural networks. While the probability of falling
into a local minimum of the gradient algorithm used
for FFBP model is great, for the training of ESN
models a one-step linear regression is used. Although
the generation of "reservoir" is randomly, for all ESN
models the similar results are received. The best ones
of both ANN models were used to fill in the missing
daily sea levels at the three time series.

Comparatively lower accuracy is obtained for
online trained ESN model as can be seen in Table 1.
This can be explained with the real time training of
the network that uses previous predications of the
model for next training steps. However, the achieved
accuracy is still enough for practical purposes.
Besides the on-line procedure has the advantage to
train the model in real time with significantly less

computational resource compared to the other
models. The obtained results for online trained ESN
model are very promising for practical applications
taking into account the need of real time prediction of
sea level variations under the extreme weather
conditions. This advantage can be used for modeling
and predicting the sea levels with a smaller sampling
step (e.g. several minutes), which is crucial in
forecasting the coastal storm processes.

The comparison of the obtained estimates of the
MSE of FFBP, ESN and MLR models shows that the
correlation coefficients differ by ~ 0.05 from the
previous work (Pashova et al.,, 2012). This can be
explained by the nature of the modeled process, the
volume and the location of missing values in the
sample of daily sea levels.

The resulting averaged values of MSE of the 20
trained FFBP models in the previous work (Pashova
& Popova, 2011) was for 2-year period while the data
in this study refer to the 5-year period 1985-1989. The
sample size for the two periods differs; respectively
the averaged mean square errors in training of the
FFBP neural networks are also different. When a large
volume of data is used for training, the generalization
ability of the ANN model increases, although the
RMSE could increases. This means that the model is
able to predict with high accuracy new values for
which the network is not preliminary trained.

Comparing the graphs and estimation criteria
presented in Table 1, we can make the inferences that:

— The phenomenon of change in daily maximum,
mean and minimum sea levels is nonlinear, and
both types of ANN architectures can model well
this non-linear process. The estimates of the MSE
and R values are close, but better statistical
estimates are obtained using the ESN neural
networks with nTDLs = 6. From numerous
experiments with both architectures it becomes
clear that the errors of predicted daily sea levels
vary from 1 to 8%, and the achieved accuracy in
mm is sufficient for prognostic purposes in both
cases;

— The trained ESN models with nTDLs = 6 provide
forecasting the missed values in the three time
series with ~ 8% higher accuracy than FFBP and
ESN with nTDLs =0;

— The MSE of MLR model has similar values as
those of on-line trained ESN model. Its correlation
coefficient R is the best for H_max in comparison
with all other modes. But, for H_mean R of MLR is
the lowest and for H_min it is almost the same as
for all other models.

The variations of daily maximum, mean and
minimum sea levels for period 1 (from 1050 to 1110
day) and period 2 (from 1590 to 1660 day) are
modeled similarly with the FFBP and ESN
architectures for gaps larger than 1 to 3 weeks. The
MLR model for the two periods represents the same
curve as ANNSs for the filled missing daily values. On
the graphs it can be seen that the non-recurrent ANNs
(FFBP) and MLR cannot model in details the non-
linear process of daily sea level variations. Further
research is needed to fill the gaps with a longer period
in the time series using neural networks to account for
the dynamics of the modeled process, for example the
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tidal influence in the Black Sea, various hydro- missing values in the time series of daily mean sea

meteorological and other factors. levels. Subsequently, 20 model tests are generated
and the best model is used to reconstruct the missing
values for various periods. The comparisons between
several tests applying the ANN models have shown

5 CONCLUSIONS that the quality of the filled missing data strongly
depends on the number of training data.

In the study two types of the artificial neural
network architectures are utilized for filling the

Table 1. Estimates of statistical parameters applying FFBP, ESN and MLR models

Model FFBP ESN with nroLs =0 ESN with ntoLs = 6 ESN online withnms=6 ~ MLR
ode
MSE  MSE» R Ro MSE  MSE» R Ro MSE  MSE» R Ro MSE MSE» R Re MSE R
cm cm cm cm cm cm cm cm cm

Hmax 589 564 086 087 58 58 084 08 582 579 08 08 641 599 084 082 610 0.92
Hmean 4.86 448 091 092 465 463 091 091 447 443 092 092 525 473 091 088 533 0.86
Hmin 548 527 089 089 539 535 088 089 528 524 089 089 620 552 088 084 565 0.88
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Figure 2. Observed (e), predicted by the model (—) and filled in (<) missing sea levels with FFBP, ESN and MLR models

for two sample periods 1 and 2 (marked in Fig. 1)
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Figure 3. Observed (e), predicted by the model (—) and filled in (x) missing sea levels with FFBP model for the period 1985-

1989.

The ANNs and MLR models can be trained with
the almost equal MSE and the similar results in
predicting the average daily maximum, mean and
minimum sea levels are obtained. The recurrent ESN
advantage compared to the non-recurrent FFBP and
MLR models is due to the significantly faster
algorithm for training and weaker dependence of the
trained model accuracy on the initial values of the
ANN parameters. Furthermore, the ESN model of the
sea level variations can be trained in real time with
significantly less computational resource compared to
the other two models without any further adaptation.
It is clear to see, that the ESN architectures deserve a
further attention for online applications and the filling
data gaps in a consistent way. Thus, the new
information obtained by the real-time measurements
is possible to be included into the ESN model that will
improve its prediction ability. This model can be used
for modelling and for predicting the sea level
variations with a smaller sampling step of the tide
gauge registrations, which is essential for the
forecasting of storm surges at the coastal areas.
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