Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Silicon carbide (SiC) is an important ceramics for engineering and industrial applications due to its advantage to withstand in high temperatures. In this article, a demonstration of SiC nanowhiskers synthesis by using microwave heating has been shown. The mixtures of raw materials in the form of pellets were heated, using a laboratory microwave furnace, to 1400 °C for 40 minutes at a heating rate of 20 °C/min. The characterization process proved that the mixture of graphite and silica in the ratio of 1:3 is an ideal composition for synthesizing single phase β-SiC nanowhiskers. Vapor-solid mechanism was suggested to explain the formation of SiC nanowhiskers by the proposed microwave heating.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
770--779
Opis fizyczny
Bibliogr. 39 poz., rys.
Twórcy
autor
- Institute of NanoElectronic Engineering, Universiti Malaysia Perlis, Seriab, 01000, Kangar, Perlis, Malaysia
autor
- Institute of NanoElectronic Engineering, Universiti Malaysia Perlis, Seriab, 01000, Kangar, Perlis, Malaysia
autor
- School of Manufacturing Engineering, Universiti Malaysia Perlis Kampus Alam Pauh Putra, 02600, Arau, Perlis, Malaysia
autor
- Institute of NanoElectronic Engineering, Universiti Malaysia Perlis, Seriab, 01000, Kangar, Perlis, Malaysia
autor
- Institute of NanoElectronic Engineering, Universiti Malaysia Perlis, Seriab, 01000, Kangar, Perlis, Malaysia
autor
- School of Materials Engineering, Universiti Malaysia Perlis, Jejawi, Arau, 02600 Perlis, Malaysia
autor
- Institute of NanoElectronic Engineering, Universiti Malaysia Perlis, Seriab, 01000, Kangar, Perlis, Malaysia
- School of Bioprocess Engineering, Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia
autor
- School of Manufacturing Engineering, Universiti Malaysia Perlis Kampus Alam Pauh Putra, 02600, Arau, Perlis, Malaysia
Bibliografia
- [1] LUTSENKO V.G., Acta Mater., 56 (11) (2008), 2450.
- [2] NAJAFI A., GOLESTANI-FARD F., REZAIE H.R., EHSANI N., J. Sol-Gel Sci. Technol., 59 (2) (2011), 205.
- [3] MARTIN H.-P., ECKE R., MULLER ¨ E., J. Eur. Ceram. Soc., 18 (12) (1998), 1737.
- [4] LI B., ZHANG C., HU H., CAO Y., QI G., LIU R., J. Mater. Eng. Perform., 16 (6) (2007), 775.
- [5] PRABHAKARAN P.V., SREEJITH K.J., SWAMINATHAN B., PACKIRISAMY S., NINAN K.N., J. Mater. Sci., 44 (2) (2008), 528.
- [6] NAJA A., FARD F.G., REZAIE H.R., EHSANI N., Powder Technol., 219 (2012), 202.
- [7] DENG S.Z., LI Z.B., WANG W.L., XU N.S., ZHOU J., ZHENG X.G., XU H.T., CHEN J., SHE J.C., Appl. Phys. Lett., 89 (2) (2006), 23.
- [8] ZHAO B., ZHANG H., TAO H., TAN Z., JIAO Z., WU M., Mater. Lett., 65 (11) (2011), 1552.
- [9] ZHU J., WU H., CHEN H.T., WU X.L., XIONG X., Phys. Lett. A, 373 (18) (2009), 1697.
- [10] LI B., SONG Y.-C., ZHANG C.-R., YU J.-S., Ceram. Int., 40 (8) (2014) 12613.
- [11] RAMAN V., BAHL O.P., DHAWAN U., J. Mater. Sci., 30 (1995), 2686.
- [12] LIN M., LOH K.P., BOOTHROYD C., DU A.Y., Appl. Phys. Lett., 85 (22) (2004), 5388.
- [13] HO G.W., WONG A.S.W., KANG D.-J., WELLAND M.E., Nanotechnology, 15 (8) (2004), 996.
- [14] AGRAWAL D.K., Curr. Opin. Solid St. M., 3 (5) (1998), 480.
- [15] MINGOS D.M.P., Adv. Mater., 5 (11) (1993), 857,
- [16] OGHBAEI M., MIRZAEE O., J. Alloy. Compd., 494 (1) (2010), 175.
- [17] RAO K.J., VAIDHYANATHAN B., GANGULI M., RAMAKRISHNAN P.A., Chem. Mater., 11 (1999), 882.
- [18] KOGUCHI M., KAKIBAYASHI H., YAZAWA M., HIRUMA K., KATSUYAMA T., Jpn. J. Appl. Phys., 31 (7R) (1992), 2061.
- [19] TONG L., REDDY R.G., Mater. Res. Bull., 41 (12) (2006), 2303.
- [20] ZHU W.Z., YAN M., Mater. Chem. Phys., 55 (1) (1998), 68.
- [21] BIERNACKI J.J., WOTZAK G.P., J. Am. Ceram. Soc., 72 (1) (1989), 122.
- [22] CETINKAYA S., EROGLU S., J. Eur. Ceram. Soc., 31 (5) 2011, 869.
- [23] CEBALLOS-MENDIVIL L.G., CABANILLAS-LOPEZ ´ R.E., TANORI ´ -CORDOVA ´ J.C., MURRIETAYESCAS R., PEREZ ´ -RABAGO ´ C.A., VILLAFAN ´ - VIDALES H.I., ARANCIBIA-BULNES C.A., ESTRADA C.A., Sol. Energy, 116 (2015), 238.
- [24] CHANGHONG D., XIANPENG Z., JINSONG Z., YONGJIN Y., LIHUA C., FEI X., J. Mater. Sci., 32 (9) (1997) 2469.
- [25] QUAH H.-J., CHEONG K.Y., LOCKMAN Z., J. Alloy. Compd., 475 (1) (2009), 565.
- [26] RAJARAO R., FERREIRA R., SADI S.H.F., KHANNA R., SAHAJWALLA V., Mater. Lett., 120 (2014) 65.
- [27] J. COATES, Interpretation of Infrared Spectra, A Practical Approach, in: MEYERS R.A. (Ed.), Encyclopedia of Analytical Chemistry, John Wiley & Sons, Inc., Chichester, 2000, p. 10815.
- [28] CHIU S.-C., LI Y.-Y., J. Cryst. Growth, 311 (4) (2009), 1036.
- [29] LI Y., CHEN C., LI J.-T., YANG Y., LIN Z.-M., Nanoscale Res. Lett., 6 (1) (2011), 454.
- [30] ZHU J., WU D.Y., CHEN H., XIONG X., CHEN X.B., Micro Nano Lett., 7 (9) (2012), 974.
- [31] ARREDONDO Y.V.F., Ceramica y vidrio ´ , 279 (c) (1969), 279.
- [32] WU R., WU L., YANG G., PAN Y., CHEN J., ZHAI R., LIN J., J. Phys. D. Appl. Phys., 40 (12) (2007), 3697.
- [33] NANDANWAR R., PURNIMA S., FOZIA Z., Am. Chem. Sci. J., 5 (1) (2015), 1.
- [34] INIEWSKI K., MORRIS J.E. (Ed.), Graphene, Carbon Nanotubes, and Nanostructures: Techniques and Applications, CRC Press, Taylor & Francis Group, Boca Raton – London – New York, 2013.
- [35] CORRIU R.J.P., GERBIER P., GUERIN ´ C., HENNER B., J. Mater. Chem., 10 (9) (2000), 2173.
- [36] KIM T., LEE J., LEE K.-H., Carbon Lett., 15 (1) (2014), 15.
- [37] MENENDEZ ´ J.A., RAHMAN R.A., ARENILLAS B.F., FERNANDEZ ´ L.Z.Y., CALVO E.G., BERMUDEZ ´ J.M., Fuel Process. Technol., 91 (1) (2010), 1.
- [38] HE C.L., CHEN Y.Q., J Microw. Power Electromagn. Energy, 47 (4) (2013), 251.
- [39] FU Q.-G., LI H.-J., SHI X.-H., LI K.-Z., WEI J., HU Z.-B., Mater. Chem. Phys., 100 (1) (2006), 108.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8ddd7180-83fa-4e5b-a20b-2f4f9eedc401