Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Mixture of nickel and titanium powders were milled in planetary mill under argon atmosphere for 100 hours at room temperature. Every 10 hours the structure, morphology and chemical composition was studied by X-ray diffraction method (XRD), scanning electron microscope (SEM) as well as electron transmission microscope (TEM). Analysis revealed that elongation of milling time caused alloying of the elements. After 100 hours of milling the powders was in nanocrystalline and an amorphous state. Also extending of milling time affected the crystal size and microstrains of the alloying elements as well as the newly formed alloy. Crystallization of amorphous alloys proceeds above 600°C. In consequence, the alloy (at room temperature) consisted of mixture of the B2 parent phase and a small amount of the B19' martensite. Dependently on the milling time and followed crystallization the NiTi alloy can be received in a form of the powder with average crystallite size from 1,5 up to 4 nm.
Wydawca
Czasopismo
Rocznik
Tom
Strony
1017--1022
Opis fizyczny
Bibliogr. 26 poz., fot., rys.
Twórcy
autor
- University of Silesia in Katowice, Institute of Materials Science, 1A 75 Pulku Piechoty Str., 41-500 Chorzow, Poland
autor
- University of Silesia in Katowice, Institute of Materials Science, 1A 75 Pulku Piechoty Str., 41-500 Chorzow, Poland
Bibliografia
- [1] F. J. Gil, J. M. Manero, J. A. Planell, J. Mat. Sci. 30, 2526-2530 (1995).
- [2] T. Waitz, V. Kazykhanov, H. P. Karnthaler, Acta Mat. 52, 137-147 (2004).
- [3] J. Ye, R. K. Mishra, A. R. Pelton, A. M. Minor, Acta Mat. 58,490-498 (2010).
- [4] G. B. Cho, Y. H. Kim, S. G. Hur, Ch. A. Yu, T. H. Nam, Met. and Mat. Intern. 12, 173-179 (2006).
- [5] P. Moine, J. P. Rivieri, M. O. Ruault, J. Chaumont, A. Pelton, R. Sinclair, Nuc. Instr. Meth. in Phys. Research B 7-8, 20-25 (1985).
- [6] H. Mori, H. Fujita, Jap. J. Appl. Phys 21, L494-L496 (1982).
- [7] P. Vermaut, L. Lityńska, R. Portier, P. Ochin, J. Dutkiewicz, Mat. Chem. and Phys. 81, 380-382 (2003).
- [8] S. Jiang, L. Hu, Y. Zhang, Y. Liang, J. Non-Cryst. Solids 367, 23-29 (2013).
- [9] R. B. Schwarz, R. R. Petrich, C. K. Saw, J. Non-Cryst. Solids 76, 281-302 (1985).
- [10] E. Sakher, N. Loudjani, M. Benchiheub, M. Bououdina, J. Nanomat. (2018), DOI: 10.1155/2018/2560641.
- [11] A. Takasaki, Phys Status Solidi A 169, 183-191 (1998).
- [12] W. Maziarz, J. Dutkiewicz, J. Van Humbeeck, T. Czeppe, Mat. Sci Eng. A, 844-848 (2004).
- [13] S. Khademzadeh, N. Parvin, P. Bariani, Int. J. Precis. Eng. Manuf. 16, 2333-2338 (2015).
- [14] M. Farvizi, Arch. Metall. Mater. 62, 1075-1079 (2017).
- [15] T. Saburi, T, Tatsumi, S, Nenno, J. de Phys. 43, C4-261 (1982).
- [16] M. Nishida, T. Honma, Scripta Met. 18, 1293-1298 (1984).
- [17] H. Morawiec, J. Ilczuk, D. Stróż, T. Goryczka, D. Chrobak, J. de Phys. IV 7, C5-155-59 (1997).
- [18] H. M. Rietveld, Acta Cryst. 22,146-151 (1967).
- [19] C. Suranarayana, M. G. Norton, X-Ray Diffraction: A Practical Approach, Springer, New York (1998).
- [20] L. Hu, S. Jiang, Y. Zhang, Y. Zhao, S. Liu, Ch. Zhao, Intermetall. 70, 45-52 (2016).
- [21] Y. Zhang, S. Jiang, L. Hu, Y, Liang, Mat. Sci. Eng. A 559,607-614(2013).
- [22] C. Rentenberger, T. Waitz, H. P. Karnthaler, Scripta Mat. 51,789-794 (2004).
- [23] M. Zhu, M. Qi, A. Q. He, H. X. Sui, W. G . Liu, Acta Metall. Mat. 42, 1893-1899 (1994).
- [24] S. Arunkumar, P. Kumaravel, C. Velmurugan, V. Senthilkumar, Int. J. Min., Metall. Mat. 25, 80-87 (2018).
- [25] W. S. Rasband, Image J, U.S. National Institutes of Health, Bethesda, Maryland, USA, https://imagej.nih.gov/ij/, 1997-2018.
- [26] J. Khalil-Allafi, W. W. Schmahl, M. Wagner, H. Sitepu, D. M. Toebbens, G. Eggeler, Mat. Sci. Eng. A 378, 161-164 (2004).
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8ddbe23c-7de5-40ca-b215-c93339e2c165