PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Active queue management with discrete sliding modes in TCP networks

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, a new active queue management (AQM) algorithm for data traffic control in TCP/IP networks is developed. The algorithm design is based on the principles of discrete sliding-mode control. Unlike majority of earlier studies, the design procedure considers the effects of both non-negligible delay in transferring data and feedback information and unpredictable capacity variations. The switching function is selected to incorporate a delay compensation mechanism, which ensures efficient network operation even for large bandwidthdelay product connections. The proposed algorithm, implemented as a packet marking scheme, is tested in discrete event ns-2 simulator. The results show that the algorithm provides fast convergence to steady state after sudden, unanticipated capacity changes. By generating smaller overshoots, the proposed algorithm also allows for reducing buffer space requirements to avoid packet loss as compared to the benchmark AQM solutions.
Rocznik
Strony
701--711
Opis fizyczny
Bibliogr. 39, wykr., rys., tab.
Twórcy
autor
  • Institute of Information Technology, Lodz University of Technology, 215 Wólczańska St., 90-924 Łódź, Poland
  • Institute of Information Technology, Lodz University of Technology, 215 Wólczańska St., 90-924 Łódź, Poland
Bibliografia
  • [1] Cisco Public Information,Cisco Visual Networking Index: Forecast and Methodology 2011-2016 1, CD-ROM (2012).
  • [2] V. Jacobson and R. Braden, TCP Extensions for Long-Delay Paths, RFC 1072, 1988.
  • [3] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanov, TCP Selective Acknowledgment Options, RFC 2018, 1996.
  • [4] T. Henderson, S. Floyd, A. Gurtov, and Y. Nishida, The NewReno Modification to TCP’s Fast Recovery Algorithm, RFC 6582, 2012.
  • [5] L. S. Brakmo and L. L. Peterson, “TCP Vegas: end-to-end congestion avoidance on a global Internet”, IEEE J. Sel. Area. Comm. 13 (8), 1465-1480 (1995).
  • [6] M. Rodríguez-Pérez, S. Herrer´ıa-Alonso, M. Fern´andez-Veiga, and C. Lopez-Garc´ıa, “Common problems in delay-based congestion control algorithms: a gallery of solutions”, Eur. T.Telecommun. 22 (4), 168-178 (2011).
  • [7] S. Floyd, “TCP and explicit congestion notification”, ACM SIGCOMM Comput. Comm. Rev. 24 (5), 10-23 (1994).
  • [8] S. Floyd and V. Jacobson, “Random Early Detection gateways for congestion avoidance”, IEEE ACM T. Network 1 (4), 397-413 (1993).
  • [9] Y. Xia, L. Subramanian, I. Stoica, and S. Kalyanaraman, “One more bit is enough”, Proc. ACM SIGCOMM 1, 37-48 (2005).
  • [10] D. Katabi, M. Handley, and Ch.E. Rohrs, “Congestion control for high bandwidth-delay product networks”, Proc. ACM SIGCOMM 1, 89-102 (2002).
  • [11] H. Wu, F. Ren, D. Muc, and X. Gong, “An efficient and fair explicit congestion control protocol for high bandwidth-delay product networks”, Comput. Commun. 32 (7-10), 1138-1147 (2009).
  • [12] Č. Milosavljević, “General conditions for the existence of a quasisliding mode on the switching hyperplane in discrete variable structure systems”, Automat. Rem. Contr. 46 (3), 307-314 (1985).
  • [13] W. Gao, Y. Wang, and A. Homaifa, “Discrete-time variable structure control systems”, IEEE T. Ind. Electron. 42 (2), 117-122 (1995).
  • [14] B. Bandyopadhyay and S. Janardhanan, Discrete-Time Sliding Mode Control. A Multirate Output Feedback Approach, Springer-Verlag, Berlin, 2006.
  • [15] P. Ignaciuk and A. Bartoszewicz, “Linear quadratic optimal discrete time sliding mode controller for connection oriented communication networks”, IEEE T. Ind. Electron. 55 (11), 4013-4021 (2008).
  • [16] P. Ignaciuk and A. Bartoszewicz, “Linear quadratic optimal sliding mode flow control for connection-oriented communication networks”, Int. J. Robust Nonlin. Contr. 19 (4), 442-461 (2009).
  • [17] X. Yu, B. Wang, and X. Li, “Computer-controlled variable structure systems: the state-of-the-art”, IEEE T. Ind. Inform. 8 (2), 197-205 (2012).
  • [18] F. Ren, C. Lin, and X. Yin, “Design a congestion controller based on sliding mode variable structure control”, Comput.Commun. 28 (9), 1050-1061 (2005).
  • [19] P. Yan, Y. Gao, and H. ¨Ozbay, “A variable structure control approach to active queue management for TCP with ECN”, IEEE T. Contr. Syst. T. 13 (2), 203-215 (2005).
  • [20] F. Yin, G.M. Dimirovski, and Y. Jing, “Robust stabilization of input delay for Internet congestion control”, Proc. Amer. Contr. Conf. 5576-5580 (2006).
  • [21] H.Wang, Y. Jing, Y. Zhou, Z. Chen, and X. Liu, “Sliding mode control for uncertain time-delay TCP/AQM network systems”, Proc. IFAC World Congr. 12013-12018 (2008).
  • [22] Y. Jing, L. He, G. M. Dimirovski, and H. Zhu, “Robust stabilization of state and input delay for Active Queue Management algorithm”, Proc. Amer. Contr. Conf. 3083-3087 (2007).
  • [23] Y. Zhou, H. Wang, Y. Jing, and X. Liu, “Observer based robust controller design for Active Queue Management”, Proc. IFAC World Congr. 12007-12012 (2008).
  • [24] M. Yan, T. D. Kolemisevska-Gugulovska, Y. Jing, and G. M. Dimirovski, “Robust discrete-time sliding-mode control algorithm for TCP networks congestion control”, Proc. Int. Conf. Telecommun. Modern Sat. Cable & Broadcast. Serv. 1, 393-396 (2007).
  • [25] X. Zheng, N. Zhang, G.M. Dimirovski, and Y. Jing “Adaptive sliding mode congestion control for DiffServ network” Proc. IFAC World Congr. 12983-12987 (2008).
  • [26] N. Zhang, M. Yang, Y. Jing, and S. Zhang, “Congestion control for DiffServ network using second-order sliding mode
  • [27] P. Ignaciuk and A. Bartoszewicz, “Discrete-time sliding-mode congestion control in multisource communication networks with time-varying delay”, T. Contr. Syst. T. 19 (4), 852-867 (2011).
  • [28] P. Baburaj and B. Bandyopadhyay, “Discrete-time integral sliding-mode flow control for connection-oriented communication networks”, Proc. Int. Conf. Contr. Automat. Rob. Vision 1, CD-ROM (2012).
  • [29] V. Misra, W.-B. Gong, and D. Towsley, “Fluid-based analysis of a network of AQM routers supporting TCP flows with an application to RED”, Proc. ACM SIGCOMM 151-160 (2000).
  • [30] S. S. Kunniyur and R. Srikant, “End-to-end congestion control schemes: utility functions, random losses and ECN marks”, IEEE ACM T. Network. 11 (5), 689-702 (2003).
  • [31] S. S. Kunniyur and R. Srikant, “An Adaptive Virtual Queue (AVQ) algorithm for active queue management”, IEEE ACM T. Network. 12 (2), 286-299 (2004).
  • [32] P. Ignaciuk and A. Bartoszewicz, “Dead-beat and reachinglaw- based sliding-mode control of perishable inventory systems”, Bull. Pol. Ac.: Tech. 59 (1), 39-49 (2011).
  • [33] Y. Shtessel, C. Edwards, L. Fridman, and A. Levant, Sliding Mode Control and Observation, Springer, New York, 2014.
  • [34] The Network Simulator - ns-2. http://www.isi.edu/nsnam/ns/
  • [35] C. Hollot, V. Misra, D. Towsley, and W.-B. Gong, “On designing improved controllers for AQM routers supporting TCP flows”, Proc. INFOCOMM 1, 1726-1734 (2001).
  • [36] M. Karbowańczyk and J. Żuk, “Quantity-based flow control strategy for connection-oriented communication networks”, Bull. Pol. Ac.: Tech. 60 (2), 293-300 (2012).
  • [37] A. Bartoszewicz, T. Molik, and P. Ignaciuk, “Discrete time congestion controllers for multi-source connection-oriented communication networks”, Int. J. Contr. 82 (7), 1237-1252 (2009).
  • [38] P. Ignaciuk and A. Bartoszewicz, “Flow control in connectionoriented networks - a time-varying sampling period system case study”, Kybernetika 44 (3), 336-359 (2008).
  • [39] S. H. Low, F. Paganini, and J. C. Doyle, “Internet congestion control”, IEEE Contr. Syst. Mag. 22 (1), 28-43 (2002).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8ddbc7e9-b9ab-456f-aef6-b47956ae420f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.