PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Neuro-adaptive cooperative control for high-order nonlinear multi-agent systems with uncertainties

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The consensus problem for a class of high-order nonlinear multi-agent systems (MASs) with external disturbance and system uncertainty is studied. We design an online-update radial basis function (RBF) neural network based distributed adaptive control protocol, where the sliding model control method is also applied to eliminate the influence of the external disturbance and system uncertainty. System consensus is verified by using the Lyapunov stability theorem, and sufficient conditions for cooperative uniform ultimately boundedness (CUUB) are also derived. Two simulation examples demonstrate the effectiveness of the proposed method for both homogeneous and heterogeneous MASs.
Rocznik
Strony
635--645
Opis fizyczny
Bibliogr. 37 poz., rys., wykr.
Twórcy
autor
  • School of Electrical and Mechanical Engineering, Hefei Technology College, Hefei 230012, China
autor
  • College of Physics and Information Engineering, Fuzhou University, Fuzhou 350018, China
autor
  • School of Electrical and Mechanical Engineering, Hefei Technology College, Hefei 230012, China
Bibliografia
  • [1] Abdelrahem, M., Hackl, C.M. and Kennel, R. (2018). Finite position set-phase locked loop for sensorless control of direct-driven permanent-magnet synchronous generators, IEEE Transactions on Power Electronics 33(4): 3097–3105.
  • [2] Arandabricaire, E., Moog, C. and Pomet, J. (1995). Infinitesimal Brunovsky form for nonlinear systems with applications to dynamic linearization, Geometry in Nonlinear Control and Differential Inclusions 13(32): 19–33.
  • [3] Aryankia, K. and Selmic, R.R. (2021). Neuro-adaptive formation control and target tracking for nonlinear multi-agent systems with time-delay, IEEE Control Systems Letters 5(3): 791–796.
  • [4] Bartoszewicz, A. and Adamiak, K. (2019). A reference trajectory based discrete time sliding mode control strategy, International Journal of Applied Mathematics and Computer Science 29(3): 517–525, DOI: 10.2478/amcs-2019-0038.
  • [5] Bechlioulis, C.P. and Rovithakis, G.A. (2017). Decentralized robust synchronization of unknown high order nonlinear multi-agent systems with prescribed transient and steady state performance, IEEE Transactions on Automatic Control 62(1): 123–134.
  • [6] Couzin, I.D., Karuse, J., James, R., Ruxton, G.D. and Franks, N.R. (2002). Collective memory and spatial sorting in animal groups, Journals of Theoretical Biology 218(1): 1–11.
  • [7] Cui, B., Zhao, C., Ma, T. and Feng, C. (2016). Leader-following consensus of nonlinear multi-agent systems with switching topologies and unreliable communications, Neural Computing and Applications 27(4): 909–915.
  • [8] Das, A. and Lewis, F.L. (2010). Cooperative adaptive control for synchronization of second-order systems with unknown nonlinearities, International Journal of Robust and Nonlinear Control 21(13): 1509–1524.
  • [9] Duan, P., Liu, K., Huang, N. and Duan, Z. (2020). Event-based distributed tracking control for second-order multiagent systems with switching networks, IEEE Transactions on Systems, Man, and Cybernetics: Systems 50(9): 3220–3230.
  • [10] Farrera, B., López-Estrada, F.R., Chadli, M., Valencia-Palomo, G. and Gómez-Peñate, S. (2020). Distributed fault estimation of multi-agent systems using a proportional-integral observer: A leader-following application, International Journal of Applied Mathematics and Computer Science 30(3): 551–560, DOI: 10.34768/amcs-2020-0040.
  • [11] Fathi, A., Shafiee, Q. and Bevrani, H. (2018). Robust frequency control of microgrids using an extended virtual synchronous generator, IEEE Transactions on Power Systems 33(6): 6289–6297.
  • [12] Fu, J., Lv, Y., Wen, G., Yu, X. and Huang, T. (2020). Velocity and input constrained coordination of second-order multi-agent systems with relative output information, IEEE Transactions on Network Science and Engineering 7(3): 1925–1938.
  • [13] Huang, J., Dou, L., Fang, H., Chen, J. and Yang, Q. (2015). Distributed backstepping-based adaptive fuzzy control of multiple high-order nonlinear dynamics, Nonlinear Dynamics 81(1–2): 63–75.
  • [14] Joshi, K.D. (1983). Introduction to General Topology, John Wiley & Sons, New York.
  • [15] Li, B., Yang, H., Chen, Z. and Liu, Z. (2018). Distributed containment control of multi-agent systems with general linear dynamics and time-delays, International Journal of Control, Automation and Systems 16(6): 2718–2726.
  • [16] Ling, S., Wang, H. and Liu, P.X. (2019). Adaptive fuzzy dynamic surface control of flexible-joint robot systems with input saturation, IEEE/CAA Journal of Automatica Sinica 6(1): 97–107.
  • [17] Liu, Y. and Jia, Y.M. (2008). Leader-following consensus protocol for second-order multi-agent systems using neural networks, Proceedings of the 27th Chinese Control Conference, Kunming, China, pp. 535–539.
  • [18] Low, D. J. (2000). Following the crowd, Nature 407(6803): 465–466.
  • [19] Lu, K., Liu, Z., Lai, G., Chen, C.L. and Zhang, Y. (2021). Adaptive consensus tracking control of uncertain nonlinear multiagent systems with predefined accuracy, IEEE Transactions on Cybernetics 51(1): 405–415.
  • [20] Ma, Q. and Miao, G.Y. (2015). Output consensus for heterogeneous multi-agent systems with linear dynamics, Applied Mathematics and Computation 271(15): 548–555.
  • [21] Meng, W., Liu, P.X., Yang, Q. and Sun, Y. (2020). Distributed synchronization control of nonaffine multiagent systems with guaranteed performance, IEEE Transactions on Neural Networks and Learning Systems 31(5): 1571–1580.
  • [22] Miao, Z., Liu, Y., Wang, Y., Yi, G. and Fierro, R. (2018). Distributed estimation and control for leader-following formations of nonholonomic mobile robots, IEEE Transactions on Automation Science and Engineering 15(4): 1946–1954.
  • [23] Ni, J., Liu, L., Liu, C. and Liu, J. (2017). Fixed-time leader-following consensus for second-order multiagent systems with input delay, IEEE Transactions on Industrial Electronics 64(11): 8635–8646.
  • [24] Nian, H. and Jiao, Y. (2020). Improved virtual synchronous generator control of DFIG to ride-through symmetrical voltage fault, IEEE Transactions on Energy Conversion 35(2): 672–683.
  • [25] Parrish, J.K., Viscido, S.V., and Grunbaum, D. (2002). Self-organized fish schools: An examination of emergent properties, Biological Bulletin 202(3): 296–305.
  • [26] Qin, J., Zhang, G., Zheng, W.X. and Kang, Y. (2019). Neural network-based adaptive consensus control for a class of nonaffine nonlinear multiagent systems with actuator faults, IEEE Transactions on Neural Networks and Learning Systems 30(12): 3633–3644.
  • [27] Shen, Q., Shi, P., Zhu, J., Wang, S. and Shi, Y. (2020). Neural networks-based distributed adaptive control of nonlinear multiagent systems, IEEE Transactions on Neural Networks and Learning Systems 31(3): 1010–1021.
  • [28] Wang, Q., Wang, J.L., Wu, H.N. and Huang, T. (2020). Consensus and h∞ consensus of nonlinear second-order multi-agent systems, IEEE Transactions on Network Science and Engineering 7(3): 1251–1264.
  • [29] Wu, Z.-G., Xu, Y., Pan, Y.-J., Su, H. and Tang, Y. (2018). Event-triggered control for consensus problem in multi-agent systems with quantized relative state measurements and external disturbance, IEEE Transactions on Circuits and Systems I: Regular Papers 65(7): 2232–2242.
  • [30] Yang, N. and Li, J. (2020). Distributed robust adaptive learning coordination control for high-order nonlinear multi-agent systems with input saturation, IEEE Access 8: 9953–9964.
  • [31] Yao, D., Li, H., Lu, R. and Shi, Y. (2020). Distributed sliding-mode tracking control of second-order nonlinear multiagent systems: An event-triggered approach, IEEE Transactions on Cybernetics 50(9): 3892–3902.
  • [32] Zhang, A., Zhang, S., Chen, Q. and Zhu, W. (2018). Consensus control of a class of second-order nonlinear multi-agent systems based on distributed adaptive protocol, Proceedings of the 30th Chinese Control and Decision Conference, CCDC 2018, Shenyang, China, pp. 4668–4672.
  • [33] Zhang, H. and Lewis, F.L. (2012). Adaptive cooperative tracking control of higher-order nonlinear systems with unknown dynamics, Automatica 48(7): 1432–1439.
  • [34] Zhao, K., Song, Y., Meng, W., Chen, C.P. and Chen, L. (2021). Low-cost approximation-based adaptive tracking control of output-constrained nonlinear systems, IEEE Transactions on Neural Networks and Learning Systems 32(11): 4890–4900.
  • [35] Zhang. Z (2008). Predictive function control of the single-link manipulator with flexible joint, 2008 IEEE International Conference on Automation and Logistics, Qingdao, China, pp. 1184–1188.
  • [36] Zong, C., Ji, Z., Tian, L. and Zhang, Y. (2019). Distributed multi-robot formation control based on bipartite consensus with time-varying delays, IEEE Access 7: 144790–144798.
  • [37] Zou, W., Shi, P., Xiang, Z. and Shi, Y. (2020). Finite-time consensus of second-order switched nonlinear multi-agent systems, IEEE Transactions on Neural Networks and Learning Systems 31(5): 1757–1762.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8dd6da11-2bf7-4ea4-936c-18a2efaf7584
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.