PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Geochemistry of shales of the Qadir Member (Nayband Formation, Upper Triassic), East Central Iran (Tabas Block) : implications for provenance and palaeogeography

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Upper Triassic shale of the Qadir Member of the Nayband Formation, East Central Iran has been analysed geochemically to evaluate provenance and palaeogeography. The Qadir Member in the Parvadeh Coal Mine section is 450 metres thick, and includes sandstone, shale, coal, siltstone, and fossiliferous limestone. XRD analysis of shale samples from the Qadir Member largely indicated the presence of illite and chlorite, with small amounts of kaolinite and montmorillonite. On binary and triangular diagrams the data suggests an intermediate igneous source rock for these shales. Plotting the geochemical data on binary diagrams also indicates the tectonic setting of an active continental margin, perhaps reflecting the Early Cimmerian tectonic event with Neothetys subduction under the Iran Plate, and collision of the Iran Plate with Turan during the Late Triassic. The Chemical Index of Alteration (CIA) and Plagioclase Index of Alteration (PIA) values for shale from the Qadir Member of Nayband Formation vary from 74.04 to 80.54 (average 78.02) and 84.31 to 91.85 (average 87.81), respectively, indicating moderate to high chemical alteration in the source area and suggesting a semi-humid climate during deposition. The geochemical data and palaeogeographical models indicate that the Qadir Member shale was deposited on an active margin in a shoreline to transitional-marine setting.
Słowa kluczowe
Rocznik
Strony
603--618
Opis fizyczny
Bibliogr. 79 poz., rys., tab., wykr.
Twórcy
  • Ferdowsi University of Mashhad, Department of Geology, Faculty of Science, Mashhad, Iran
  • Ferdowsi University of Mashhad, Department of Geology, Faculty of Science, Mashhad, Iran
  • Ferdowsi University of Mashhad, Department of Geology, Faculty of Science, Mashhad, Iran
  • Ferdowsi University of Mashhad, Department of Geology, Faculty of Science, Mashhad, Iran
Bibliografia
  • 1. Aghanabati, A., 2006. Geology of Iran (in Persian). Geological Survey of Iran, Tehran.
  • 2. Akarish, A.I., El-Gohary, A.M., 2008. Petrography and geochemistry of lower Paleozoic sandstones, East Sinai, Egypt: implications for provenance and tectonic setting. Journal of African Earth Sciences, 52: 43-54.
  • 3. Alavi, M., 1991. Sedimentary and structural characteristics of the Paleo-Tethys remnants in Northeastern Iran. Geological Society of America Bulletin, 103: 983-992.
  • 4. Alavi, M., Vaziri, H., Seyed-Emami, K., Lasemi, Y., 1997. The Triassic and associated rocks of the Nakhlak and Aghdarband areas in central and northeastern Iran as remnants of the southern Turanian active continental margin. Geological Society of America Bulletin, 109: 1563-1575.
  • 5. Alvarez, N.C., Roser, B.P., 2007. Geochemistry of black shales from the Lower Cretaceous Paja Formation, Eastern Cordillera, Colombia: source weathering, provenance and tectonic setting. Journal of South American Earth Sciences, 23: 271-289.
  • 6. Armas, P., Moreno, C., Sánchez, M. L., González, F., 2014. Sedimentary palaeoenvironment, petrography, provenance and diagenetic inference of the Anacleto Formation in the Neuquén Basin, Late Cretaceous, Argentina. Journal of South American Earth Sciences, 53: 59-76.
  • 7. Arvin, M., Pan, Y., DarGahi, S., MalekiZadeh, A., Babaei, A., 2007. Petrochemistry of the Siah-Kuh granitoid stock southwest of Kerman, Iran: implications for initiation of Neotethys subduction. Journal of Asian Earth Sciences, 30: 474-489.
  • 8. Barrier, E., Vrielynck, B., 2008. Palaeotectonic maps of the Middle East - tectono-sedimentary-palinsspastic maps from the Late Norian to Pliocene. Paris (Commission for the Geological Map of the World; CGMW/CCGM).
  • 9. Bauluz, B., Mayayo, M.J., Fernandez-Nieto, C., Lopez, J.M.G., 2000. Geochemistry of Precambrian and Paleozoic siliciclastic rocks from the Iberian Range (NE Spain): implications for source-area weathering, sorting, provenance, and tectonic setting. Chemical Geology, 168: 135-150.
  • 10. Bayet-Goll, A., Hosseini Barzi, M., 2011. Geochemistry of major elements of siliciclastic deposits from Shirgesht Formation, in Kalmard block, Central Iran, implications for provenance, tectonic setting, and weathering intensity. Journal of Scientific Quarterly Geosciences, 20: 101-112.
  • 11. Berberian, M., King, G.C.P., 1981. Towards a paleogeography and tectonic evolution of Iran. Canadian Journal of Earth Sciences, 18: 210-265.
  • 12. Bhatia, M.R., 1983. Plate tectonics and geochemical composition of sandstones. The Journal of Geology, 91: 611-627.
  • 13. Bhatia, M.R., Crook, K.A., 1986. Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins. Contributions to Mineralogy and Petrology, 92: 181-193.
  • 14. Cox, R., Lowe, D.R., Cullers, R.L., 1995. The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States. Geochimica et Cosmochimica Acta, 59: 2919-2940.
  • 15. Crook, K.A.W., 1974. Lithogenesis and geotectonics: the signature of compositional variation on flysch arenites (graywackes) in modern and ancient geosynclinal sedimentation. SEPM Special Publication, 19: 304-310.
  • 16. Cullers, R.L., 2000. The geochemistry of shales, siltstones and sandstones of Pennsylvanian-Permian age, Colorado, USA: implications for provenance and metamorphic studies. Lithos, 51: 181-203.
  • 17. DaPeng, L., YueLong, C., Zhong, W., Yu, L., Jian, Z., 2012. Paleozoic sedimentary record of the Xing-Meng Orogenic Belt, Inner Mongolia: Implications for the provenances and tectonic evolution of the Central Asian Orogenic Belt. Chinese Science Bulletin, 57: 776-785.
  • 18. Das, B.K., Al-Mikhlafi, A.S., Kaur, P., 2006. Geochemistry of Mansar Lake sediments, Jammu, India: implication for source-area weathering, provenance, and tectonic setting. Journal of Asian Earth Sciences, 26: 649-668.
  • 19. Davoudzadeh, M., Schmit, K., 1983. A review of Mesozoic paleogeography and tectonic evolution of Iran. Tehran: Geological Survey of Iran, 51: 415-435.
  • 20. Dickinson, W.R., 1985. Interpreting Provenance Relations from Detrital Modes of Sandstones. In: Provenance of Arenites (ed. G.G. Zuffa): 333-363. Springer, Dordrecht (Reidel Publishing Company).
  • 21. Dickinson, W.R., Suczek, C.A., 1979. Plate tectonics and sandstone compositions. AAPG Bulletin, 63: 2164-2182.
  • 22. Fedo, C.M., Nesbitt, H.W., Young, G.M., 1995. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology, 23: 921-924.
  • 23. Fleming, E., Flowerdew, M.J., Smyth, H.R., Scott, R.A., Morton, A.C., Omma, J.E., Frei, D., Whitehouse, M.J., 2016. Provenance of Triassic sandstones on the southwest Barents Shelf and the implication for sediment dispersal patterns in northwest Pangaea. Marine and Petroleum Geology, 78: 516-535.
  • 24. Floyd, P.A., Leveridge, B.E., 1987. Tectonic environment of the Devonian Gramscatho basin, South Cornwall: framework mode and geochemical evidence from turbiditic sandstones. Journal of Geological Society, 144: 531-542.
  • 25. Fürsich, F.T., Wilmsen, M., Seyed-Emami, K., Majidifard, M.R., 2003. Evidence of synsedimentary tectonics in the northern Tabas Block, east-central Iran: the Callovian (Middle Jurassic) Sikhor Formation. Facies, 48: 151-170.
  • 26. Fürsich, F.T., Hautmann, M., Senowbari-Daryan, B., Seyed-Emami, K., 2005. The Upper Triassic Nayband and Darkuh Formations of east-central Iran: Stratigraphy, facies patterns and biota of extensional basins on an accreted terrane. Beringeria, 35: 53-133.
  • 27. Fürsich, F.T., Wilmsen, M., Seyed-Emami, K., Majidifard, M.R., 2009. Lithostratigraphy of the Upper Triassic-Middle Jurassic Shemshak Group of Northern Iran. Geological Society of London, Special Publications, 312: 129-160.
  • 28. Garver, J.I., Royce, P.R., Smick, T.A., 1996. Chromium and nickel in shale of the Taconic foreland: a case study for the provenance of fine-grained sediments with an ultramafic source. Journal of Sedimentary Research, 100: 100-106.
  • 29. Getaneh, W., 2002. Geochemistry provenance and depositional tectonic setting of the Adigrat Sandstone northern Ethiopia. Journal of African Earth Sciences, 35: 185-198.
  • 30. Ghasemi, A., Talbot, C.J., 2006. A new tectonic scenario for the Sanandaj-Sirjan Zone (Iran). Journal of Asian Earth Sciences, 26: 683-693.
  • 31. Golonka, J., 2004. Plate tectonic evolution of the southern margin of Eurasia in the Mesozoic and Cenozoic. Tectonophysics, 381: 235-273.
  • 32. Hayashi, K.I., Fujisawa, H., Holland, H.D., Ohmoto, H., 1997. Geochemistry of ~1.9 Ga sedimentary rocks from northeastern Labrador, Canada. Geochimica et Cosmochimica Acta, 61: 4115-4137.
  • 33. Hessler, A.M., Lower, D.M., 2006. Wethering and sediment generation in the Archean: an integrated study of the evolution of siliciclastic sedimentary rocks of the 3.2 Ga Moodies Group, Barberton Greenstone Belt, South Africa. Precambrian Research, 151: 185-210.
  • 34. Humphreys, B., Morton, A.C., Hallsworth, C.R., Gatliff, W.R., Riding, J., 1995. An integrated approach to provenance studies: a case example from the Upper Jurassic of the Central Graben, North Sea. In: Developments in Sedimentary Provenance Studies (eds. A.C. Morton, S.P. Todd and P.D.W. Haughton): 230-251. Published by the Geological Society of London.
  • 35. Jafarzadeh, M., Moussavi-Harami, R., Amini, A., Mahboubi, A., Farzaneh, F., 2014. Geochemical constraints on the provenance of Oligocene- Miocene siliciclast deposits (Zivah Formation) of NW Iran: implications for the tectonic evolution of the Caucasus. Arabian Journal of Geosciences, 7: 4245-2463.
  • 36. Jin, Z., Li, F., Cao, J., Wang, S., Yu, J., 2006. Geochemistry of Daihai Lake sediments, Inner Mongolia, north China: implications for provenance, sedimentary sorting, and catchment weathering. Geomorphology, 80: 147-163.
  • 37. Khanehbad, M., Moussavi-Harami, R., Mahboubi, A., Nadjafi, M., Mahmudy Gharaie, M.H., 2012a. Geochemistry of Carboniferous Sandstones (Sardar Formation), East-Central Iran: implication for Provenance and Tectonic Setting. Acta Geologica Sinica (English Edition), 86: 1200-1210.
  • 38. Khanehbad, M., Moussavi-Harami, R., Mahboubi, A., Nadjafi, M., 2012b. Geochemistry of Carboniferous Shales of the Sardar Formation, East Central Iran: implication for Provenance, Paleoclimate and Paleo Oxygenation Conditions at a Passive Continental Margin. Geochemistry International, 50: 777-790.
  • 39. Lee, Y.I., 2002. Provenance derived from the geochemistry of late Paleozoic-early Mesozoic mudrocks of the Pyeongan Supergroup, Korea. Sedimentary Geology, 149: 219-235.
  • 40. Mahavaraju, J., 2015. Geochemistry of Late Cretaceous sedimentary rocks of the Cauvery Basin, South India: constraints on paleo weathering, provenance, and end Cretaceous environments. Chemostratigraphy, 8: 185-214.
  • 41. Malekzadeh Shafaroudi, A., Karimpour, M.H., Stern, C.R., 2015. The Khopik porphyry copper prospect, Lut Block, Eastern Iran: geology, alteration and mineralization, fluid inclusion, and oxygen isotope studies. Ore Geology Reviews, 65: 522-544.
  • 42. Moosavirad, A.M., Janardhana, M.R., Sethumadhav, M.S., Moghadam, M.R., Shankara, M., 2011. Geochemistry of lower Jurassic shales of the Shemshak Formation, Kerman Province, Central Iran: provenance, source weathering and tectonic setting. Chemie der Erde-Geochemistry, 71: 279-288.
  • 43. Moussavi-Harami, R., Ghaemi, F., 2006. Korit Geological Map 1:100,000. Geological Survey and Mineral Exploration of Iran, Tehran.
  • 44. Nesbitt, H.W., Young, G.M., 1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299: 715-717.
  • 45. Nesbitt, H.W., Young, G.M., 1984. Prediction of some weathering trends of plutonic and volcanic rocks based upon thermodynamic and kinetic consideration. Geochimcal Cosmochimcal Acta, 48: 1523-1534.
  • 46. Nesbitt, H.W., Young, G.M., 1989. Formation and diagenesis of weathering profile. The Journal of Geology, 97: 129-147.
  • 47. Ogala, J.E., Olobaniyi, S.B., Omo-Irabor, O.O., Adaikpoh, E.O., 2014. Petrographic and geochemical study of the Maastrichtian Ajali Sandstone, North Central Nigeria. Geological Quarterly, 59 (1): 79-90.
  • 48. Osman, M., 1996. Recent to Quaternary River Nile sediments: a sedimentological characterization on samples from As428. M.J.J. Rahman and S. Suzuki wan to Naga-Hammadi, Egypt. Unpubl. Ph.D. thesis, University of Vienna, Vienna.
  • 49. Paikaray, S., Banerjee, S., Mukherji, S., 2008. Geochemistry of shales from the Paleoproterozoic to Neoproterozoic Vindhyan Supergroup: Implications on provenance, tectonics and paleoweathering. Journal of Asian Earth Sciences, 32: 34-48.
  • 50. Pettijohn, F.J., Potter, P.E., Siever, R., 1987. Sand and Sandstone (2nd). Springer-Verlag, New York.
  • 51. Potter, P.E., Maynard, J.B., Depetris, P.J., 2005. Mud and Mudstone: Introduction and Overview. Springer-Verlag, Berlin Heidelberg.
  • 52. Rieser, A.B., Neubauer, F., Liu, Y., Ge, X., 2005. Sandstone provenance of north-western sectors of the intracontinental Cenozoic Qaidam basin, western China: tectonic vs. climatic control. Sedimentary Geology, 177: 1-18.
  • 53. Roser, B.P., Korsch, R.J., 1986. Determination of tectonic setting of sandstone-mudstone suites using SiO2 content and K2O/Na2O ratio. Journal of Geology, 94: 635-650.
  • 54. Roser, B.P., Korsch, R.J., 1988. Provenance signatures of sandstone-mudstone suites determined using discriminant function analysis of major-element data. Chemical Geology, 67: 119-139.
  • 55. Sabbagh Bajestani, M., Mahboubi, A., Moussavi-Harami, R., Nadjafi, M., 2018. Petrography and geochemistry of sandstones succession of the Qal'eh Dokhtar Formation (Middle-Upper Jurassic), East Central Iran: implications for provenance, tectonic setting and palaeoweathering. Journal of African Earth Sciences, 147: 523-535.
  • 56. Saidi, M., Masoudi, M., Nazemi, M., Faridi, M., Naimi-Ghassabian, N., 2006. Gharb-E-Shekasteh Abshaleh Geological Map 1:100,000. Geological Survey and Mineral Exploration of Iran, Tehran.
  • 57. Salehi, M.A., Moussavi-Harami, S.R., Mahboubi, A., Wilmsen, M., Heubeck, C., 2014. Tectonic and palaeogeographic implications of compositional variations within the siliciclastic Ab-Haji Formation (Lower Jurassic, east-central Iran). Neues Jahrbuch für Geologie und Paläontologie-Abhandlungen, 271: 21-48.
  • 58. Salehi, M.A., Mazroei Sebdani, Z., Pakzad, H.R., Bahrami, A., Fürsich, F.T., Heubeck, C., 2018. Provenance and palaeogeography of uppermost Triassic and Lower Cretaceous terrigenous rocks of central Iran: Reflection of the Cimmerian events. Neues Jahrbuch für Geologie und Paläontologie- Abhandlungen, 288: 49-77.
  • 59. Schieber, J., 1992. A combined petrographical-geochemical provenance study of the Newland Formation, Mid-Proterozoic of Montana. Geological Magazine, 129: 223-237.
  • 60. Şengӧr, A.M.C., Altiner, D., Cin, A., Ustaömer, T., Hsü, K. J., 1988. Origin and assembly of the Tethyside orogenic collage at the expense of Gondwana Land. Geological Society of London, Special Publications, 37: 119-181.
  • 61. Seyed-Emami, K., 2003. Triassic in Iran. Facies, 48: 91-106.
  • 62. Seyed-Emami, K., Fürsich, F.T., Wilmsen, M., 2004. Documentation and significance of tectonic events in the northern Tabas Block (East-Central Iran) during the Middle and Late Jurassic. Rivista Italiana di Paleontologia e Stratigrafia, 110: 163-171.
  • 63. Shahrabi, M., 1999. Triassic in Iran (in Persian). Geological Survey of Iran, Tehran.
  • 64. Sheikholeslami, M.R., 2016. Tectono-stratigraphic evidence for the opening and closure of the Neotethys Ocean in the southern Sanandaj-Sirjan zone, Iran. Geological Society of America Special, SPE525-09.
  • 65. Stampfli, G.M., Marcoux, J., Baud, A., 1991. Tethyan margins in space and time. Palaeogeography, Palaeoclimatology, Palaeoecology, 87: 373-409.
  • 66. Stampfli, G.M., Borel, G.D., 2002. A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrones. Earth and Planetary Science Letters, 196: 17-33.
  • 67. Stöcklin J., 1974. Possible Ancient Continental Margins in Iran. In: Geology of Continental Margins (eds. C.A. Burk and C.L. Drake). Springer, Berlin, Heidelberg.
  • 68. Taylor, S.R., McLennan, S.M., 1985. The continental crust: its composition and evolution. Blackwell Scientific Publications, Oxford.
  • 69. Valiani, Z., Rezaee, P., 2014. Chemical Characteristics, Provenance Determination and Genesis Conditions of Clay Deposits of Kahrizak Formation (Early-Late Pleistocene), East of Tehran, Iran. GSTF Journal of Geological Sciences (JGS), 1: 15-22.
  • 70. Verma, S.P., Armstrong-Altrin, J.S., 2013. New multi-dimensional diagrams for tectonic discrimination of siliciclastic sediments and their application to Precambrian basins. Chemical Geology, 355: 117-133.
  • 71. Visser, J.N.J., Young, G.M., 1990. Major element geochemistry and palaeoclimatogy of the Permo-Carboniferous glacigene Dwyka Formation and post-glacial mudrocks in southern Africa. Palaeogeography, Palaeoclimatology, Palaeoecology, 81: 49-57.
  • 72. Weltje, G.J., 2002. Quantitative analysis of detrital modes: statistically rigorous confidence regions in ternary diagrams and their use in sedimentary petrology. Earth-Science Reviews, 57: 211-253.
  • 73. Weltje, G.J., von Eynatten, H., 2004. Quantitative provenance analysis of sediments: review and outlook. Sedimentary Geology, 171 : 1-11.
  • 74. Wilmsen, M., Fürsich, F.T., Seyed-Emami, K., Majidifard, M.R., 2009a. An overview of the stratigraphy and facies development of the Jurassic System on the Tabas Block, east-central Iran. Geological Society of London, Special Publications, 312: 323-343.
  • 75. Wilmsen, M., Fürsich, F.T., Seyed-Emami, K., Majidifard, M.R., Taheri, J., 2009b. The Cimmerian Orogeny in northern Iran: tectono-stratigraphic evidence from the foreland. Terra Nova, 21: 211-218.
  • 76. Wilmsen, M., Fürsich, F.T., Seyed-Emami, K., Majidifard, M.R., Zamani-Pedram, M., 2010. Facies analysis of a large-scale Jurassic shelf-lagoon: the Kamar-e-Mehdi Formation of east-central Iran. Facies, 56: 59.
  • 77. Wronkiewicz, D.J., Condie, C., 1987. Geochemistry of Archean Shales from the Witwatersrand Supergroup, South Africa: Source- Area Weathering and Provenance. Geochim et cosmochimica Acta, 51: 2401-2416.
  • 78. Yong, I.L., 2009. Geochemistry of shales of the Upper Cretaceous Hayang Group, SE Korea: implications for provenance and source weathering at an active continental margin. Sedimentary Geology, 215: 1-12.
  • 79. Zaid, S.M., 2015. Geochemistry of sandstones from the Pliocene Gabir Formation, north Marsa Alam, Red Sea, Egypt: implication for provenance, weathering and tectonic setting. Journal of African Earth Sciences, 102: 1-17.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8dd43d19-5223-43a2-a200-c8ff848371ec
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.