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Abstract 

Modelling and prediction of the operation and reliability of technical multistate ageing systems related to their 
operation processes called complex systems are briefly presented and applied to prediction of the operation 
processes and reliability characteristics of an exemplary complex non-homogeneous system composed of a 
series-parallel and a series-“m out of l” subsystems linked in series, changing its reliability structure and its 
components reliability parameters at variable operation conditions. Further, the linear programming is proposed 
to the operation and reliability optimization of complex technical systems operating at variable operation 
conditions. The method consists in determining the optimal values of limit transient probabilities at the system 
operation states that maximize the system lifetimes in the reliability state subsets. The proposed method is 
practically applied to the operation and reliability optimization of the considered exemplary complex system.  
 
1. Introduction  

The complexity of the systems’ operation processes 
and their influence on changing in time the systems’ 
structures and their components’ reliability 
parameters are very often met in real practice. Thus, 
the practical importance of an approach linking the 
system reliability models and the system operation 
processes models into an integrated general model in 
reliability assessment of real technical systems is 
evident. The convenient tools for analyzing these 
problems are semi-Markov modelling  the systems’ 
operation processes [1]-[4], [12], [16]-[17], [20], [26] 
and  multistate approach to the systems’ reliability 
evaluation [6], [10], [21], [29]-[32]. The common 
usage of those two tools in order to construct the 
joint general system reliability model related to its 
operation process [7]-[9], [11], [13]-[16], [23]-[25] 
and to apply it to the reliability analysis of complex 
technical systems is briefly presented and applied to 
the reliability evaluation of an exemplary complex 
system. The complex technical systems reliability 
improvement and decreasing the risk of exceeding a 
critical reliability state are of great value in the 
industrial practice [16], [18]-[19], [28]. There are 
needed the tools allowing for changing their 
operation processes after comparing the values of 
these characteristics with their values before their 

operation processes optimization in order to improve 
their reliability [5], [13]-[14], [16], [21], [27].  
 

 2. Complex system operation modeling   

We assume that the system during its operation 
process is taking ,, Nv ∈ν  different operation states 

..,..,, 21 νzzz  Further, we define the system operation 

process )(tZ , ),,0 +∞∈<t  with discrete operation 

states from the set }..,..,,{ 21 νzzz  Moreover, we 
assume that the system operation process Z(t) is a 
semi-Markov process [3], [12]-[13], [26] with the 
conditional sojourn times 

bl
θ  at the operation states 

b
z  when its next operation state is ,

l
z  ,,...,2,1, vlb =  

.lb ≠  Under these assumptions, the system operation 
process may be described by:   
- the vector νx1)]0([

b
p  of the initial probabilities 

),)0(()0( bb zZPp ==  ,,...,2,1 vb =  of the system 
operation process Z(t) staying at particular operation 
states at the moment 0=t ;  
- the matrix ννx][ blp  of probabilities ,blp  

,,...,2,1, vlb =  ,lb ≠  of the system operation process 

Z(t) transitions between the operation states bz  and 

lz ;  
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- the matrix ννx)]([ tH bl  of conditional distribution 

functions )()( tPtH blbl <= θ , ,0≥t  ,,...,2,1, vlb =  

,lb ≠  of the system operation process Z(t) 

conditional sojourn times blθ  at the operation states.  

As the mean values ][ blE θ  of the conditional sojourn 

times blθ  are given by  
  

  ][ blbl EM θ= ∫=
∞

0

),(ttdH
bl

 ,,...,2,1, vlb =  ,lb ≠    (1)    

 
then from the formula for total probability, it follows 
that the unconditional distribution functions of the 
sojourn times ,bθ ,,...,2,1 vb =  of the system 

operation process )(tZ  at the operation states ,bz  
,,...,2,1 vb =  are given by [3], [16], [21], [26]   

       

   )(tHb  = ∑
=

v

l
blbl

tHp
1

),(  ,0≥t  .,...,2,1 vb =                                                                                               (6) 

 
Hence, the mean values ][

b
E θ  of the system 

operation process )(tZ  unconditional sojourn times 

,
b

θ  ,,...,2,1 vb =  at the operation states are given by   
       

   ][ bb EM θ=  = ∑
=

v

l
blbl Mp

1
, ,,...,2,1 vb =                         (2) 

 
where blM  are defined by the formula (1).  
The limit values of the system operation process 

)(tZ  transient probabilities at the particular 

operation states )(tp
b

= P(Z(t) = bz ) , ),,0 +∞∈<t  
,,...,2,1 vb =  are given by [3], [15], [21], [26] 

  

   
b

p  = )(lim tpb
t ∞→

= ,

1
∑
=

v

l
ll

bb

M

M

π

π
 ,,...,2,1 vb =               (3)     

 
where ,bM  ,,...,2,1 vb =  are given by (2), while the 

steady probabilities 
b

π  of the vector νπ
xb 1][  satisfy 

the system of equations   
 

   






∑ =

=

=

v

l
l

blbb
p

1
.1

]][[][

π

ππ
                                                (4) 

 
Other interesting characteristics of the system 
operation process )(tZ  possible to obtain are its total 

sojourn times bθ̂  at the particular operation states 

,bz  ,,...,2,1 vb =  during the fixed system opetation 

time. It is well known [3], [16], [21], [26] that the 

system operation process total sojourn times bθ̂  at 

the particular operation states ,
b

z  for sufficiently 
large operation time ,θ  have approximately normal 
distributions with the expected value given by  
 

   ,]ˆ[ˆ θθ bbb pEM ==  ,,...,2,1 vb =                          (5) 
 
where bp  are given by (3). 

Example 
We consider a series system S  composed of the 
subsystems 

1
S  and 

2
S , with the scheme showed in 

Figure 1.  
 
 
 
 

 
Figure 1. The scheme of the exemplary system S  

reliability structure 
 
We assume that the subsystem 1S  is a series-parallel 
system with the scheme given in Figure 2 and the 
subsystem 2S  illustrated in Figure 3 is either a 
series-parallel system or a series-“2 out of 4” system. 
 
 
 
 
 

 
 
 

Figure 2. The scheme of the subsystem 1S  reliability 
structure 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3. The scheme of the subsystem 2S  reliability 

structure 
 
The subsystems 1S  and 2S  are forming a general 
series reliability structure of the system presented in 
Figure 1. However, this system reliability structure 
and its subsystems and components reliability 
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depend on its changing in time operation states [13], 
[16], [26].  
Under the assumption that the system operation 
conditions are changing in time, we arbitrarily fix the 
number of the system operation process states 4=ν  
and we distinguish the following as its operation 
states:  
• an operation state −1z  the system is composed of 

the subsystem 
1

S  with the scheme showed in 
Figure 2 that is a series-parallel system,   

• an operation state −2z  the system is composed of 

the subsystem 
2

S  with the scheme showed in 
Figure 3 that is a series-parallel system,   

• an operation state −
3

z  the system is a series 
system with the scheme showed in Figure 1 
composed of the subsystems 

1
S  and 

2
S  that are 

series-parallel systems with the schemes 
respectively given in Figure 2 and Figure 3, 

• an operation state −4z  the system is a series 
system with the scheme showed in Figure 1 
composed of the subsystem 

1
S  and 

2
S , while the 

subsystem 1S  is a series-parallel system with the 

scheme  given in Figure 2 and the subsystem 
2

S  
is a series-“2 out of 4” system with the scheme 
given in Figure 3.  

The influence of the above system operation states 
changing on the changes of the exemplary system 
reliability structure is indicated in these operation 
states above definitions and illustrated in Figures 1-
3. Its influence on the system components reliability 
will be defined in this example continuation in 
Section 3.   
We arbitrarily assume that the probabilities 

bl
p  of 

the exemplary system operation process transitions 
from operation state 

b
z  into the operation state 

l
z  

are given in the matrix below 
  

   =][
bl

p



















035.025.040.0

65.0020.015.0

55.025.0020.0

45.030.025.00

.                      (6) 

 
We also arbitrarily fix the conditional mean values 

],[ blbl EM θ= ,4,3,2,1, =lb  of the exemplary system 
sojourn times at the particular operation states as 
follows:    
 
   ,19012 =M ,48013 =M ,20014 =M  
   ,10021 =M ,8023 =M  ,6024 =M  
   ,87031 =M ,48032 =M  ,30034 =M  

   ,32041 =M ,51042 =M .44043 =M                      (7) 
 
This way, the exemplary system operation process is 
defined and we may find its main characteristics. 
Namely, applying (2), (6) and (7), the unconditional 
mean sojourn times at the particular operation states 
are:  
  
   ,5.2811 =M  ,0.732 =M   

   ,5.4213 =M  .5.4094 =M                                    (8) 
          

Further, according to (4), after considering (6), we 
find the steady probabilities   
 
   ,216.01 ≅π  ,191.02 ≅π   

   ,237.03 ≅π  .356.04 ≅π                                        (9) 
  
After considering the result (8) and (9), according to 
(3), the limit values of the exemplary system 
operation process transient probabilities )(tpb

 at the 

operation states 
bz  are:   

 
   ,190.01 ≅p ,043.02 ≅p  

   ,312.03 ≅p .455.04 ≅p                                      (10) 
 

Hence, the expected values of the total sojourn times 

bθ̂ , ,4,3,2,1=b  of the exemplary system operation 

process at the particular operation states bz , 

,4,3,2,1=b  during the fixed operation time 1=θ  
year = 365 days, after applying (5), amount (in days):  
 

   ,3.69ˆ
1 ≅M  ,7.15ˆ

2 ≅M   

   ,9.113ˆ
3 ≅M  .1.166ˆ

4 ≅M                                  (11) 
 
3. Complex system reliability modeling   

We assume that the changes of the operation states of 
the system operation process Z(t) have an influence 
on the system multistate components 

i
E , 

,,...,2,1 ni =  reliability and the system reliability 
structure as well. Consequently, we denote the 
system multistate component 

i
E , ,,...,2,1 ni =  

conditional lifetime in the reliability state subset 
},...,1,{ zuu +  while the system is at the operation 

state ,
b

z ,,...,2,1 vb =  by )()( uT b

i
 and its conditional 

reliability function by the vector 
 
   )()],([ b

i tR ⋅ = [1, ,)]1,([ )(b

i tR ..., )()],([ b

i ztR ],                                            
 
with the coordinates defined by 
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   ))()(()],([ )()(

b

b

i

b

i
ztZtuTPutR =>=                                                                                  

 
for ),,0 ∞∈<t  ,,...,2,1 zu = .,...,2,1 vb =  

The reliability function )()],([ b

i utR  is the conditional 

probability that the component 
i

E  lifetime )()( uT b

i
 in 

the reliability state subset },...,1,{ zuu +  is greater 
than t, while the system operation process Z(t) is at 
the operation state

b
z . 

Similarly, we denote the system conditional lifetime 
in the reliability state subset },...,1,{ zuu + while the 

system is at the operation state ,bz ,,...,2,1 vb = by 

)()( uT b  and the conditional reliability function of the 

system by the vector  
 
   )()],([ bt ⋅R  = [1, ,)]1,([ )(btR ..., ])],([ )(bztR ,                                                                                (22) 
 
with the coordinates defined by 
 
   )()],([ butR ))()(( )(

b

b ztZtuTP =>=
                  

(12) 

 
for ),,0 ∞∈<t  ,,...,2,1 zu = .,...,2,1 ν=b   

The reliability function )()],([ butR  is the conditional 

probability that the system lifetime )()( uT b  in the 

reliability state subset },...,1,{ zuu +  is greater than t, 
while the system operation process Z(t) is at the 
operation state .bz  
Further, we denote the system unconditional lifetime 
in the reliability state subset },...,1,{ zuu +  by )(uT  
and the unconditional reliability function of the 
system by the vector 
   
   ),( ⋅tR  = [1, ),1,(tR ..., ),( ztR ],                              
 
with the coordinates defined by 
 
   ),( utR ))(( tuTP >=                                          (13) 
 
for ),,0 ∞∈<t  .,...,2,1 zu =  

In the case when the system operation time θ  is 
large enough, the coordinates of the unconditional 
reliability function of the system defined by (13) are 
given by  
 

   ),( utR )(

1
]),([ b

v

b
b

utp∑≅
=

R  for 0≥t , ,,...,2,1 zu =   (14)                                                                    (25) 

 
where )()],([ butR , ,,...,2,1 zu = ,,...,2,1 ν=b are the 
coordinates of the system conditional reliability 
functions defined by (12) and

b
p , ,,...,2,1 ν=b are the 

system operation process limit transient probabilities 
given by (3). 
Thus, the mean value )]([)( uTEu =µ  of the system 

unconditional lifetime )(uT  in the reliability state 
subset },...,1,{ zuu +  is  given by [16], [26] 
 

   ,)()(
1
∑≅
=

ν
µµ

b
bb upu  ,,...,2,1 zu =                        (15) 

 
where )]([)( )( uTEuM b

b =  are the mean values of the 

system conditional lifetimes )()( uT b  in the reliability 

state subset },...,1,{ zuu +  at the operation state ,bz  

,,...,2,1 ν=b given by 
 

   ∫=
∞

0

)( ,)],([)( dtutu b
b Rµ  ,,...,2,1 zu =                    (16)                                                               

 
)()],([ butR , ,,...,2,1 zu =  ,,...,2,1 ν=b  are defined by 

(12) and 
b

p  are given by (3). Since the relationships 

between the system unconditional lifetimes )(uT  in 
the particular reliability states and the system 
unconditional lifetimes )(uT  in the reliability state 
subsets can be expressed by   
 
   ),1()()( +−= uTuTuT  ,1,...,1,0 −= zu      

   ),()( zTzT =                                                           
 
then we get the following formulae for the mean 
values of the unconditional lifetimes of the system in 
particular reliability states   
 
   ),1()()( +−= uuu µµµ  ,1,...,1,0 −= zu     
   ),()( zz µµ =                                                       (17) 
 
where ),(uµ  ,,...,1,0 zu =  are given by (15).  
Moreover, if s(t) is the system reliability state at he 
moment ,t  ),,0 ∞∈<t and ,r },,...,2,1{ zr ∈ is the 
system critical reliability state, then the system risk 
function   
 
    r(t) = P(s(t) < r | s(0) = z) = P(T(r) ≤ t), ),,0 ∞∈<t  
 
defined as the probability that the system is in the 
subset of states worse than the critical state r, r 
∈{1,...,z} while it was in the state z at the moment t = 
0 is given by [16]  
 
   r(t) = −1  ),( rtR , ),,0 ∞∈<t                              (18) 
 
where ),( rtR  is the coordinate of the system 
unconditional reliability function given by (14) for 
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ru =  and if τ is the moment when the system risk 
function exceeds a permitted level δ, then   
 
   =τ r ),(1 δ−                                                            (19) 
 

where r )(1 t− , if it exists, is the inverse function of 
the risk function r(t) given by (18). 
 

Example (continuation) 
In Section 2, it is fixed that the exemplary system 
reliability structure and its subsystems and 
components reliability depend on its changing in 
time operation states. Considering the assumptions 
and agreements of these sections, we assume that its 
subsystems ,υS  ,2,1=υ  are composed of four-state,  

i.e. z = 3, components ,)(υ
ij

E  ,2,1=υ  having the 

conditional reliability functions given by the vector  
 
   )()( )],([ b

ij
tR ⋅υ = [1, )()( )]1,([ b

ij
tR υ , )()( )]2,([ b

ij
tR υ ,   

                         )()( )]3,([ b

ij
tR υ ],  ,4,3,2,1=b  

 
with the exponential co-ordinates  
 
   ],)]1([exp[)]1,([ )()()()( b

ij

b

ij
tR υυ λ−=   

   ],)]2([exp[)]2,([ )()()()( b

ij

b

ij
tR υυ λ−=  

   ],)]3([exp[)]3,([ )()()()( b

ij

b

ij
tR υυ λ−=  

 
different at various operation states 

bz , ,4,3,2,1=b  
and with the intensities of departure from the 
reliability state subsets },3,2,1{ },3,2{ },3{  
respectively  
 
   )()( )]1([ b

ij

υλ , )()( )]2([ b

ij

υλ , )()( )]3([ b

ij

υλ , .4,3,2,1=b  

     
The influence of the system operation states 
changing on the changes of the system reliability 
structure and its components reliability functions is 
as follows. 
At the system operation state 1z , the system is 

composed of the series-parallel subsystem 
1

S  with 
the structure showed in Figure 2, containing two 
identical series subsystems ( 2)1( =k ), each 
composed of sixty components ( ,60)1(

1 =l 60)1(

2 =l ) 
with the exponential reliability functions. In both 
series subsystems of the subsystem 

1
S  there are 

respectively: 
- the components ,)1(

ij
E  ,2,1=i  ,40,...,2,1=j with 

the conditional reliability function coordinates 
 
   )1()1( )]1,([ tR

ij
= exp[-0.0008t],  

   )1()1( )]2,([ tR
ij

= exp[-0.0009t],  

   )1()1( )]3,([ tR
ij

= exp[-0.0010t], ,2,1=i ;40,...,2,1=j  

 
- the components ,)1(

ij
E  ,2,1=i  ,60,...,42,41=j with 

the conditional reliability function coordinates 
 
   )1()1( )]1,([ tR

ij
= exp[-0.0011t],  

   )1()1( )]2,([ tR
ij

= exp[-0.0012t],  

   )1()1( )]3,([ tR
ij

= exp[-0.0013t],  

   ,2,1=i .60,...,42,41=j  
 
Thus, at the operational state 1z , the system is 
identical with the subsystem 

1S  that is a four-state 
series-parallel system with its structure shape 
parameters , ,60)1(

1 =l  60)1(

2 =l , and according to 
Ptoposition 1 given in [17], its conditional reliability 
function is given by 
 
   )1()],([ ⋅tR ,)]1,([,1[ )1(tR= ,)]2,([ )1(tR ])]3,([ )1(tR   (20) 
 
for t ≥ 0, where 
 
   )1()]1,([ tR ],108.0exp[]054.0exp[2 tt −−−=           

   )1()]2,([ tR ],120.0exp[]060.0exp[2 tt −−−=         

   )1()]3,([ tR ].132.0exp[]066.0exp[2 tt −−−=     (21) 
 
The expected values and standard deviations of the 
system conditional lifetimes in the reliability state 
subsets }3,2,1{ , }3,2{ , }3{  at the operation state 1z , 
calculated from the results given by (21), according 
to (16), respectively are:  
 

)1(1µ  = ∫
∞

0

[R(t,1)](1) dt ≅ 27.78,                          

)2(1µ  = ∫
∞

0

[R(t,2)](1)dt = 25.00,                          

)3(1µ  = ∫
∞

0

[R(t,3)](1)dt ≅ 22.73.                          (22) 

 
At the system operation state 2z , the system is 

composed of the series-parallel subsystem 
2

S  with 
the structure showed in Figure 3, containing four 
identical series subsystems ( 4)2( =k ), each 
composed of eighty components ( ,80)2(

1 =l  

,80)2(

2 =l  ,80)2(

3 =l  80)2(

4
=l ) with the exponential 

reliability functions. In all series subsystems of the 
subsystem 

2S  there are respectively: 

- the components ,)2(

ij
E  ,4,3,2,1=i  ,40,...,2,1=j  

with the conditional reliability function co-ordinates 
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   )2()2( )]1,([ tR
ij

= exp[-0.0014t],  

   )2()2( )]2,([ tR
ij

= exp[-0.0015t], 

   )2()2( )]3,([ tR
ij

= exp[-0.0016t], ,4,3,2,1=i  

 ;40,...,2,1=j  
 
- the components ,)2(

ij
E  ,4,3,2,1=i  ,40,...,22,21=j  

with the conditional reliability function co-ordinates 
 
   )2()2( )]1,([ tR

ij
=exp[-0.0018t],  

   )2()2( )]2,([ tR
ij

=exp[-0.0020t],  

   )2()2( )]3,([ tR
ij

=exp[-0.0022t], ,4,3,2,1=i      

   .80,...,42,41=j  
 
Thus, at the operation state 2z , the system is 
identical with the subsystem 

2
S  that is a four-state 

series-parallel system with its structure shape 
parameters ,4)2( =k  ,80)2(

1
=l  ,80)2(

2
=l  ,80)2(

3 =l  

80)2(

4
=l , and according to Proposition 1 given in 

[17], its conditional reliability function is given by 
 
   )2()],([ ⋅tR ,)]1,([,1[ )2(tR= ,)]2,([ )2(tR ])]3,([ )2(tR  (23) 
 
for t ≥ 0, where 
 
   )2()]1,([ tR ]256.0exp[6]128.0exp[4 tt −−−=       
                 ]384.0exp[4 t−+ ],512.0exp[ t−−           
   )2()]2,([ tR ]280.0exp[6]140.0exp[4 tt −−−=  
                 ]420.0exp[4 t−+ ],560.0exp[ t−−          
   )2()]3,([ tR ]304.0exp[6]152.0exp[4 tt −−−=  
                   ]456.0exp[4 t−+ ].608.0exp[ t−−      (24) 
 
The expected values and standard deviations of the 
system conditional lifetimes in the reliability state 
subsets }3,2,1{ , }3,2{ , }3{  at the operation state 1z , 
calculated from the results given by (24), according 
to (16), respectively are:  
 

   )1(2µ  = ∫
∞

0

[R(t,1)](2) dt ≅ 16.27,                        

   )2(2µ  = ∫
∞

0

[R(t,2)](2)dt ≅ 14.88,                          

   )3(2µ  = ∫
∞

0

[R(t,3)](2)dt ≅ 13.71.                       (25) 

 
At the system operation state 3z , the system is a 
series system with the structure showed in Figure 1, 
composed of two series-parallel subsystems 1S  and  

2
S  illustrated respectively in Figure 2 and Figure 3. 

The subsystem 
1

S  with the structure showed in 
Figure 2, consists of two identical series subsystems 

( 2)3( =k ), each composed of sixty components 
( ,60)3(

1
=l 60)3(

2
=l ) with the exponential reliability 

functions. In both series subsystems of the subsystem 

1S  there are respectively: 

- the components ,)1(

ij
E  ,2,1=i ,40,...,2,1=j  with 

the conditional reliability function co-ordinates 
 
   )3()1( )]1,([ tRij

= exp[-0.0009t], 

   )3()1( )]2,([ tR
ij

= exp[-0.0010t],  

   )3()1( )]3,([ tR
ij

= exp[-0.0011t], ,2,1=i ;40,...,2,1=j  

 
- the components ,)1(

ij
E  ,2,1=i ,60,...,42,41=j  with 

the conditional reliability function co-ordinates 
 
   )3()1( )]1,([ tR

ij
= exp[-0.0012t],  

   )3()1( )]2,([ tR
ij

= exp[-0.0014t],  

   )3()1( )]3,([ tR
ij

= exp[-0.0016t], ,2,1=i  

   .60,...,42,41=j  
 
Thus, at the operation state 3z , the subsystem 

1
S  is a 

four-state series-parallel system with its structure 
shape parameters 2)3( =k , ,60)3(

1
=l  60)3(

2
=l , and 

according to Proposition 1 given in [17], its 
conditional reliability function is given by 
 
   )3()1( )],([ ⋅tR ,1[= ,)]1,([ )3()1( tR ,)]2,([ )3()1( tR  
   ])]3,([ )3()1( tR                                                        (26) 
 
for t ≥ 0, where 
 
   )3()1( )]1,([ tR ],120.0exp[]060.0exp[2 tt −−−=        
   )3()1( )]2,([ tR ],136.0exp[]068.0exp[2 tt −−−=       
   )1()]3,([ tR ].152.0exp[]076.0exp[2 tt −−−=        (27) 
 
The subsystem 

2
S  with the structure showed in 

Figure 3, consists of four identical series subsystems 
( 4)3( =k ), each composed of eighty components 
( ,80)3(

1
=l ,80)3(

2
=l ,80)3(

3 =l 80)3(

4
=l ) with the 

exponential reliability functions given below. In all 
series subsystems of the subsystem 

2
S  there are 

respectively: 
- the components ,)2(

ij
E  ,4,3,2,1=i  ,40,...,2,1=j  

with the conditional reliability function co-ordinates 
 
   )3()2( )]1,([ tR

ij
=exp[-0.0010t],  

   )3()2( )]2,([ tR
ij

= exp[-0.0011t],  

   )3()2( )]3,([ tR
ij

= exp[-0.0012t], ,4,3,2,1=i  

   ;40,...,2,1=j  
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- the components ,)2(

ij
E  ,4,3,2,1=i  ,80,...,42,41=j  

with the conditional reliability function co-ordinates 
 
   )3()2( )]1,([ tR

ij
=exp[-0.0014t],  

   )3()2( )]2,([ tR
ij

= exp[-0.0016t],  

   )3()2( )]3,([ tR
ij

= exp[-0.0018t], ,4,3,2,1=i   

   .80,...,42,41=j  
 
Thus, at the operation state 3z , the subsystem 

2
S  is a 

four-state series-parallel system with its structure 
shape parameters 4)3( =k , ,80)3(

1
=l  ,80)3(

2
=l  

,80)3(

3 =l  80)3(

4
=l , and according to Proposition 1 

given in [17], its conditional reliability function is 
given by 
 
   )3()2( )],([ ⋅tR ,1[= ,)]1,([ )3()2( tR ,)]2,([ )3()2( tR  

   ],)]3,([ )3()2( tR  t ≥ 0,                                            (28) 
 
where 
 
   )3()2( )]1,([ tR ]192.0exp[6]096.0exp[4 tt −−−=   
                     ]288.0exp[4 t−+ ],384.0exp[ t−−   
   )3()2( )]2,([ tR ]216.0exp[6]108.0exp[4 tt −−−=  
                      ]324.0exp[4 t−+ ],432.0exp[ t−−      
   )3()2( )]3,([ tR  ]240.0exp[6]120.0exp[4 tt −−−=  
                       ]360.0exp[4 t−+ ].480.0exp[ t−−  (29) 
 
Considering that the system at the operation state 3z  
is a four-state series system composed of subsystems 

1S  and 2S , after applying the formulae appearing 
after Definition 3.4 in [16] and  (27) and (29), its 
conditional reliability function is given by  
 
   )3()],([ ⋅tR ,)]1,([,1[ )3(tR= ,)]2,([ )3(tR ])]3,([ )3(tR  (30) 
 
for t ≥ 0, where 
         
   )3()]1,([ tR ]252.0exp[12]156.0exp[8 tt −−−=    
                   ]348.0exp[8 t−+ ]424.0exp[2 t−−   
                   ]312.0exp[6]216.0exp[4 tt −+−−  
                   ],504.0exp[]408.0exp[4 tt −+−−   
   )3()]2,([ tR ]284.0exp[12]176.0exp[8 tt −−−=   
                   ]392.0exp[8 t−+ ]500.0exp[2 t−−         
                   ]344.0exp[6]236.0exp[4 tt −+−−  
                   ],560.0exp[]452.0exp[4 tt −+−−         
   )3()]3,([ tR ]316.0exp[12]196.0exp[8 tt −−−=  
                   ]436.0exp[8 t−+ ]556.0exp[2 t−−                    
                   ]376.0exp[6]256.0exp[4 tt −+−−  
                   ].616.0exp[]496.0exp[4 tt −+−−       (31) 

The expected values and standard deviations of the 
system conditional lifetimes in the reliability state 
subsets }3,2,1{ , }3,2{ , }3{  at the operation state 3z , 
calculated from the results given by (31), according 
to (16), respectively are:  
 

   )1(3µ  = ∫
∞

0

[R(t,1)](3)dt ≅ 14.82,                              

   )2(3µ  = ∫
∞

0

[R(t,2)](3)dt ≅ 13.04,                          

   )3(3µ  = ∫
∞

0

[R(t,3)](3)dt ≅ 11.48.                        (32) 

 
At the system operation state 4z , the system is a 
series system with the scheme showed in Figure 1, 
composed of the subsystem 

1
S  and 

2
S  illustrated 

respectively in Figure 2 and Figure 3, whereas the 
subsystem 

1
S  is a series-parallel system and the 

subsystem 
2

S  is a series-“2 out of 4” system.  

The subsystem 
1

S  consists of two identical series 
subsystems ( 2)4( =k ), each composed of sixty 
components ( ,60)4(

1
=l 60)4(

2
=l ) with the 

exponential reliability functions the same as at the 
operation state .1z  Thus, according to (21), the 
subsystem 

1
S  conditional reliability function at the 

operation state 4z , is given by 
          
   )4()1( )],([ ⋅tR ,1[= ,)]1,([ )4()1( tR ,)]2,([ )4()1( tR  
   ])]3,([ )4()1( tR                                                        (33) 
 
for t ≥ 0, where 
 
   )4()1( )]1,([ tR ],108.0exp[]054.0exp[2 tt −−−=        
   )4()1( )]2,([ tR ],120.0exp[]060.0exp[2 tt −−−=       
   )4()]3,([ tR ].132.0exp[]066.0exp[2 tt −−−=       (34) 
 
The subsystem 

2
S  consists of four identical series 

subsystems ( 4)4( =k ), each composed of eighty 
components ( ,80)4(

1
=l  ,80)4(

2
=l  ,80)4(

3 =l  

80)4(

4
=l ) with the exponential reliability functions 

the same as at the operation state 2z  and is a series-
“2 out of 4” system ( 2=m ). Thus, at the operation 
state 4z , the subsystem 

2
S  is a four-state series-“2 

out of 4” system, with its structure shape parameters 
,4)4( =k  ,80)4(

1
=l  ,80)4(

2
=l  ,80)4(

3 =l  80)4(

4
=l , 

and according to Proposition 1 given in [17], its 
conditional reliability function is given by 
 
   )4()2( )],([ ⋅tR ,1[= ,)]1,([ )4()2( tR ,)]2,([ )4()2( tR  
   ])]3,([ )4()2( tR                                                        (35) 
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for t ≥ 0, where 
       
   )4()2( )]1,([ tR ]384.0exp[8]256.0exp[6 tt −−−=     
                      ]512.0exp[3 t−+ ,                                 
   )4()2( )]2,([ tR ]420.0exp[8]280.0exp[6 tt −−−=  
                      ]560.0exp[3 t−+ ,                                
   )4()2( )]3,([ tR ]456.0exp[8]304.0exp[6 tt −−−=     
                      ].608.0exp3 t−+                              (36) 
 
Considering that the system at the operation state 4z  
is a four-state series system composed of subsystems 

1S  and 2S , after applying the formulae appearing 
after Definition 3.4 in [16] and (34) and (36), its 
conditional reliability function is given by  
 
   )4()],([ ⋅tR ,)]1,([,1[ )4(tR= ,)]2,([ )4(tR ])]3,([ )4(tR (37) 
  
for t ≥ 0, where 
 
   )4()]1,([ tR = ]364.0exp[6]310.0exp[12 tt −−−  
                 ]438.0exp[16 t−− ]492.0exp[8 t−+   
                 ]620.0exp[3]566.0exp[6 tt −−−+ ,      
   )4()]2,([ tR = ]400.0exp[6]340.0exp[12 tt −−−  
                   ]480.0exp[16 t−− ]540.0exp[8 t−+  
                   ]680.0exp[3]620.0exp[6 tt −−−+ ,     
   )4()]3,([ tR = ]436.0exp[6]370.0exp[12 tt −−−  
                   ]522.0exp[16 t−− ]588.0exp[8 t−+  
                   ]740.0exp[3]674.0exp[6 tt −−−+ .  (38) 
 
The mean values of the system sojourn times T(u) in 
the reliability state subsets after applying the formula 
(38) and (16), are:   
 

   )1(4µ  = ∫
∞

0

[R(t,1)](4) dt ≅ 7.72,                               

   )2(4µ  = ∫
∞

0

[R(t,2)](4)dt ≅ 7.04,                               

   )3(4µ  = ∫
∞

0

[R(t,3)](4)dt ≅ 6.47.                         (39)    

 
In the case when the system operation time is large 
enough its unconditional four-state reliability 
function is given by the vector  
 
   ),( ⋅tR ),1,(,1[ tR= ),2,(tR )]3,(tR  for t ≥ 0,      (40) 
 
where according to (14) and considering the 
exemplary system operation process transient 
probabilities at the operation states determined by 
(10), the vector co-ordinates are given respectively 
by   
 

   )1,(tR )1(

1 )]1,([ tp R= )2(

2 )]1,([ tp R+ )3(

3 )]1,([ tp R+    

               )4(

4 )]1,([ tp R+                      

               )1()]1,([190.0 tR⋅= )2()]1,([043.0 tR⋅+  

               )3()]1,([312.0 tR⋅+ ,)]1,([455.0 )4(tR⋅+        

   )2,(tR )1(

1 )]2,([ tp R= )2(

2 )]2,([ tp R+ )3(

3 )]2,([ tp R+  

              )4(

4 )]2,([ tp R+  

              )1()]2,([190.0 tR⋅= )2()]2,([043.0 tR⋅+  

              )3()]2,([312.0 tR⋅+ ,)]2,([455.0 )4(tR⋅+       

   )3,(tR )1(

1 )]3,([ tp R= )2(

2 )]3,([ tp R+  

              )3(

3 )]3,([ tp R+ )4(

4 )]3,([ tp R+  

              )1()]3,([190.0 tR⋅= )2()]3,([043.0 tR⋅+  

              )3()]3,([312.0 tR⋅+ ,)]3,([455.0 )4(tR⋅+    (41)                           
                
where the coordinates ,)]1,([ )1(tR  ,)]1,([ )2(tR  

,)]1,([ )3(tR  )4()]1,([ tR , ,)]2,([ )1(tR  ,)]2,([ )2(tR  

,)]2,([ )3(tR  )4()]2,([ tR , ,)]3,([ )1(tR  ,)]3,([ )2(tR  

,)]3,([ )3(tR  )4()]3,([ tR  are given by (21), (24), (31), 
(38). 
The graph of the four-state exemplary system 
reliability function is illustrated in Figure 4.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4. The graph of the exemplary system 
reliability function ),( ⋅tR coordinates 

 
The expected values of the system unconditional 
lifetimes in the reliability state subsets }3,2,1{ , }3,2{ , 

}3{ , calculated from the results given by (41) 
according to (16) and considering (15) and (22), (25), 
(32), (39), respectively are:  
 
   )1(µ )1(11 µp= )1(22 µp+ )1(33µp+  )1(44 µp+  
            +⋅= 78.27190.0 +⋅ 27.16043.0 82.14312.0 ⋅  
            72.7455.0 ⋅+ ≅ 14.11,                                   
   )2(µ )2(11 µp= )2(22 µp+ )2(33µp+      

            )2(44 µp+  
            +⋅= 00.25190.0 +⋅ 88.14043.0 04.13312.0 ⋅  

0
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0,6

0,8

1
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R
(t

,u
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             04.7455.0 ⋅+ ≅ 12.66,                                      
   )3(µ )3(11 µp= )3(22 µp+ )3(

33
Mp+  )3(44 µp+  

            +⋅= 73.22190.0 +⋅ 71.13043.0 48.11312.0 ⋅  
            47.6455.0 ⋅+ ≅ 11.43.                               (42)         
 
Farther, considering (17) and (42), the mean values 
of the system unconditional lifetimes in the particular 
reliability states 1, 2, 3, respectively are:    
 
   ,45.1)2()1()1( =−= µµµ        
   ,23.1)3()2()2( =−= µµµ  
   43.11)3()3( == µµ .                                      (43) 
 
Since the critical reliability state is r = 2, then the 
system risk function, according to (18), is given by  
 
   r(t) )2,(1 tR−= for t ≥ 0,                                   (44) 
 
where )2,(tR  is given by (41).   
Hence, by (19), the moment when the system risk 
function exceeds a permitted level, for instance δ  = 
0.05, is  
 
   τ = r−1(δ) ≅ 2.25.                                                 (45) 
 
The graph of the risk function r(t) of the exemplary 
four-state system operating at the variable conditions 
is given in Figure 5. 
 

0

0,2

0,4

0,6

0,8

1

0 10 20 30 40 50 60t

r (t )

 
 

Figure 5. The graph of the exemplary system risk 
function r(t) 
 
4. Complex system reliability and operation 
optimization   

Considering the equation (14), it is natural to assume 
that the system operation process has a significant 
influence on the system reliability. This influence is 
also clearly expressed in the equation (15) for the 
mean values of the system unconditional lifetimes in 
the reliability state subsets.   

From the linear equation (15), we can see that the 
mean value of the system unconditional lifetime 

)(uµ , ,,...,2,1 zu =  is determined by the limit values 

of transient probabilities ,
b

p  ,,...,2,1 ν=b  of the 
system operation process at the operation states 
given by (3) and the mean values )(ubµ , 

,,...,2,1 ν=b  ,,...,2,1 zu =  of the system conditional 
lifetimes in the reliability state subsets 

},,...,1,{ zuu + ,,...,2,1 zu =  given by (16). 
Therefore, the system lifetime optimization approach 
based on the linear programming [13], [15], [17], 
[22]. can be proposed. Namely, we may look for the 
corresponding optimal values ,

b
p&  ,,...,2,1 ν=b  of 

the transient probabilities ,
b

p  ,,...,2,1 ν=b  of the 
system operation process at the operation states to 
maximize the mean value )(uµ  of the unconditional 
system lifetimes in the reliability state subsets 

},,...,1,{ zuu + ,,...,2,1 zu =  under the assumption 

that the mean values )(ubµ , ,,...,2,1 ν=b  
,,...,2,1 zu =  of the system conditional lifetimes in 

the reliability state subsets are fixed. As a special and 
practically important case of the above formulated 
system lifetime optimization problem,  if ,r  

,,...,2,1 zr =  is a system critical reliability state, we 
may look for the optimal values ,

b
p&  ,,...,2,1 ν=b  of 

the transient probabilities ,
b

p  ,,...,2,1 ν=b  of the 
system operation process at the system operation 
states to maximize the mean value )(rµ  of the 
unconditional system lifetime in the reliability state 
subset },,...,,1,{ zrr + ,,...,2,1 zr =  under the 

assumption that the mean values )(rbµ , 
,,...,2,1 ν=b  ,,...,2,1 zr =  of the system conditional 

lifetimes in this reliability state subset are fixed. 
More exactly, we may formulate the optimization 
problem as a linear programming model with the 
objective function of the following form  
 

   ∑=
=

ν
µµ

1
)()(

b
bb rpr                                               (46) 

 
for a fixed },...,2,1{ zr ∈  and with the following 
bound constraints 
       

   ,
bbb

ppp
)( ≤≤  ,,...,2,1 ν=b  ∑ =

=

ν

1
,1

b
bp                 (47) 

 
where )(rbµ , ,0)( ≥rbµ  ,,...,2,1 ν=b  are fixed 
mean values of the system conditional lifetimes in 
the reliability state subset },...,1,{ zrr +  and  
 
   ,

b
p
(

 10 ≤≤
b

p
(

 and ,
b

p
)

 ,10 ≤≤
b

p
)

 ,
bb

pp
)( ≤     (48)   



Kołowrcki Krzysztof, Soszyńska-Budny Joanna 
Operation and reliability optimization of complex technical systems  

 

 100

  ,,...,2,1 ν=b                                                            
 
are lower and upper bounds of the unknown transient 
probabilities 

b
p , ,,...,2,1 ν=b  respectively.  

Now, we can obtain the optimal solution of the 
formulated by (46)-(48) the linear programming 
problem, i.e. we can find the optimal values 

b
p&  of 

the transient probabilities ,
b

p  ,,...,2,1 ν=b  that 
maximize the objective function given by (1).  
First, we arrange the system conditional lifetime 
mean values ),(rbµ  ,,...,2,1 ν=b  in non-increasing 

order ≥)(
1

rbµ ≥)(
2

rbµ . . . ),(rbν
µ≥  where 

},...,2,1{ ν∈
i

b  for .,...,2,1 ν=i  
Next,  we substitute  
 
   

ibi
px = , 

ibi
px
(( = , 

ibi
px
)) =  for  ν,...,2,1=i        (49)           

 
and we maximize with respect to ,

i
x  ,,...,2,1 ν=i  

the linear form (46) that after this transformation 
takes the form  
 

   ∑=
=

ν
µµ

1
)()(

i
ibi rxr                                              (50) 

 
for a fixed },...,2,1{ zr ∈  with the following bound 
constraints 
 

   ,
iii

xxx
)( ≤≤ ,,...,2,1 ν=i  ∑ =

=

ν

1
,1

i
ix                      (51)   

 
where ),(r

ibµ  ,0)( ≥r
ibµ  ,,...,2,1 ν=i  are fixed 

mean values of the system conditional lifetimes in 
the reliability state subset },...,1,{ zrr +  arranged in 
non-increasing order and  
 
   ,

i
x
(

 10 ≤≤
i

x
(

 and ,
i

x
)

 ,10 ≤≤
i

x
)

 ,
ii

xx
)( ≤          (52)  

   ,,...,2,1 ν=i                                                              
 
are lower and upper bounds of the unknown 
probabilities 

i
x , ,,...,2,1 ν=i  respectively.  

To find the optimal values of ,
i

x  ,,...,2,1 ν=i  we 
define 
  

   ∑=
=

ν

1
,

i
ixx
((

 xy
(−= 1ˆ                                             (53) 

 
and 
 

   ,00 =x
(

 00 =x
)   and ∑=

=

I

i
i

I xx
1

,
((

 ∑=
=

I

i
i

I xx
1

))
        (54) 

   for   .,...,2,1 ν=I                                                             
 

Next, we find the largest value },...,1,0{ ν∈I  such 
that  
 
   yxx II ˆ<− ()

                                                        (55) 
 
and we fix the optimal solution that maximize (50) in 
the following way:  
i) if ,0=I  the optimal solution is  
 
   

11
ˆ xyx

(
& +=  and 

ii
xx
(

& =  for ;,...,3,2 ν=i             (56) 
 
ii) if ,0 ν<< I  the optimal solution is  
 
   

ii
xx
)

& =  for ,,...,2,1 Ii =
11

ˆ
++ ++−=

I

II

I
xxxyx
(()

&   

   and 
ii

xx
(

& =  for  ;,...,3,2 ν++= IIi               (57) 
 
iii) if ,ν=I  the optimal solution is  
 
   

ii
xx
)

& =  for .,...,2,1 ν=i                                       (58) 
 
Finally, after making the inverse to (49) substitution, 
we get the optimal limit transient probabilities  
 
   

iib
xp && =  for  ,,...,2,1 ν=i                                    (59) 

 
that maximize the system mean lifetime in the 
reliability state subset },,...,1,{ zrr + defined by the 
linear form (46), giving its maximum value in the 
following form 
 

   ∑=
=

ν
µµ

1
)()(

b
bb rpr &&                                               (60) 

 
for a fixed },...,2,1{ zr ∈ .  
From the expression (60) for the maximum mean 
value )(rµ&  of the system unconditional lifetime in 
the reliability state subset },,...,1,{ zrr +  replacing in 
it the critical reliability state r  by the reliability state 

,u ,,...,2,1 zu =  we obtain the corresponding optimal 
solutions for the mean values of the system 
unconditional lifetimes in the reliability state subsets 

},...,1,{ zuu +  of the form  
  

   ∑=
=

ν
µµ

1
)()(

b
bb upu &&  for  .,...,2,1 zu =                  (61) 

 
Further, according to (13)-(14), the corresponding 
optimal unconditional multistate reliability function 
of the system is the vector   
  
   ),( ⋅tR& = [1, ),1,(tR& ..., ),( ztR& ],                          (62) 
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with the coordinates given by  
 

   ),( utR& )(

1
]),([ b

v

b
b utp∑≅

=
R&  for 0≥t ,                   (63) 

   .,...,2,1 zu =   
 
And, by (17), the optimal solutions for the mean 
values of the system unconditional lifetimes in the 
particular reliability states are   
  
   ),1()()( +−= uuu µµµ &&&  ,1,...,1, −= zu     

   ).()( zz µµ && =                                                         (64) 
 
Moreover, considering (18) and (19), the 
corresponding optimal system risk function and the 
optimal moment when the risk exceeds a permitted 
level δ, respectively are given by  
  
   )(tr& = 1 - ),,( rtR&  ,0≥t                                     (65) 
 
and    
 
   =τ& ),(1 δ−r&                                                          (66) 
 
where ),( rtR&  is given by (63) for ru =  and ),(1 t−r&  
if it exists, is the inverse function of the optimal risk 
function ).(tr&  

Replacing in (3) the limit transient probabilities 
b

p  
of the system operation process at the operation 
states by their optimal values ,

b
p&  maximizing the 

mean value )(rµ  of the system lifetime in the 
reliability states subset },...,1,{ zrr +  defined by (46) 

and the mean values bM  of the unconditional 
sojourn times at the operation states by their 
corresponding unknown optimal values ,bM&  we get 
the system of equations   
 

   
b

p&  = ,

1
∑
=

v

l
ll

bb

M

M

&

&

π

π
 .,...,2,1 vb =                               (67) 

 
After simple transformations the above system takes 
the form  
 
   0...)1( 1221111 =+++− ννπππ MpMpMp &&&&&&  

   0...)1( 2222112 =++−+ ννπππ MpMpMp &&&&&&  
   ...                                                                          (68) 
   ,0)1(...2211 =−+++ ννννν πππ MpMpMp &&&&&&  

 
where bM&  are unknown variables we want to find, 

b
p&  are optimal transient probabilities determined by 

(59) and 
b

π  are steady probabilities determined by 
(4) .  
Since the system of equations (68) is homogeneous 
and it can be proved that the determinant of its main 
matrix is equal to zero, then it has nonzero solutions 
and moreover, these solutions are ambiguous. Thus, 
if we fix some of the optimal values bM&  of the mean 

values bM  of the unconditional sojourn times at the 
operation states, for instance by arbitrary fixing one 
or a few of them, we may find the values of the 
remaining once and this way to get the solution of 
this equation.  
Having this solution, it is also possible to look for the 
optimal values blM&  of the mean values blM  of the 
conditional sojourn times at the operation states 
using the following system of equations  
 

   ,
1

b

v

l
blbl MMp && =∑

=
 ,,...,2,1 vb =                              (69) 

 
obtained from (2) by replacing bM  by bM&  and blM  

by ,blM&  were 
bl

p  are known probabilities of the 
system operation process transitions between the 
operation states 

b
z  i ,

l
z  .,...,2,1, vlb =  

Another very useful and much easier to be applied in 
practice tool that can help in planning the operation 
processes of the complex technical systems are the 
system  operation process optimal mean values of the 

total system operation process sojourn times bθ̂  at 

the particular operation states ,
b

z  ,,...,2,1 vb =  during 
the fixed system operation time ,θ  that  can be 
obtain by the replacing in the formula (5) the 
transient probabilities 

b
p  at the operation states bz  

by their optimal values 
b

p&  and resulting in the 
following expession   

   ,]ˆ[ˆ θθ bbb pEM &&& ==  .,...,2,1 vb =                        (70) 
  
The knowledge of the optimal values bM&  of the 
mean values of the unconditional sojourn times and 
the optimal values blM&  of the mean values of the 
conditional sojourn times at the operation states and 

the optimal mean values bM
&̂

 of the total sojourn 
times at the particular operation states during the  
fixed system operation time may by the basis for 
changing the complex technical systems operation 
processes in order to ensure these systems operation 
more reliable.  
Example (continuation)   
We consider a series system S  composed of the 
subsystems 

1
S  and 

2
S , with the  scheme showed in 
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Figures 1-3. This system reliability structure and its 
components reliability parameters depend on its 
changing in time operation states with arbitrarily 
fixed the number of the system operation process 
states 4=ν  and their influence on the system 
reliability indicated in Sections 2-3 where its main 
reliability characteristics are predicted.  
To find the optimal values of those system reliability 
characteristics, we conclude that the objective 
function defined by (46), in this case, as the 
exemplary system critical state is 2=r , according to 
(42), takes the form  
            
   )2(µ  +⋅= 00.251p +⋅ 88.142p 04.133 ⋅p      

            04.74 ⋅+ p .                                                (71) 
 
Arbitrarily assumed, the lower 

b
p
(

 and upper 
b

p
)

 
bounds of the unknown optimal values of transient 
probabilities 

b
p , ,4,3,2,1=b  respectively are: 

  
   201.01 =p

(
, 03.02 =p
(

,  

   245.03 =p
(

, 309.04 =p
(

, 

   351.01 =p
)

, 105.02 =p
)

, 

   395.03 =p
)

, 459.04 =p
)

.                                     (72) 
 
Therefore, according to (47), we assume the 
following bound constraints  
 
   ,351.0201.0 1 ≤≤ p  ,105.0030.0 2 ≤≤ p  

   ,395.0245.0 3 ≤≤ p  .459.0309.0 4 ≤≤ p                                                                                 (30) 

   ∑ =
=

4

1
,1

b
bp                                                      (73) 

 
Now, before we find optimal values 

b
p&  of the 

transient probabilities ,
b

p  ,4,3,2,1=b  that maximize 
the objective function (71), w arrange the system 
conditional lifetime mean values ),2(bµ  ,4,3,2,1=b  
in non-increasing order  
 
   ≥)2(1µ ≥)2(2µ ≥)2(3µ ).2(4µ  
 
Further, according to (49),  we substitute  
 
   ,11 px =  ,22 px =  ,33 px = ,44 px =                    (74)  
 
and  
 
   201.011 == px

((
, ,030.022 == px

((
  

   245.033 == px
((

, 309.044 == px
((

;                     (75)                                             

   351.011 == px
))

, 105.022 == px
))

,  

   395.033 == px
))

, ,459.044 == px
))

                     (76)                                                  

and we maximize with respect to ,
i

x  ,4,3,2,1=i  the 
linear form (71)  that according to (50)-(51) takes the 
form  
 
   )2(µ  +⋅= 00.251x +⋅ 88.142x 04.133 ⋅x  

             04.74 ⋅+ x ,                                               (77) 
 
with the following bound constraints 
 
   ,351.0201.0 1 ≤≤ x  ,105.0030.0 2 ≤≤ x  

   ,395.0245.0 3 ≤≤ x  .459.0309.0 4 ≤≤ x               

   ∑ =
=

4

1
.1

i
ix                                                          (78) 

 
According to (53), we calculate   
 

   ∑ ==
=

4

1
,785.0

i
ixx
((

  

   xy
(−= 1ˆ  = 1 -  0.785 = 0.215                           (79) 

 
and according to (54), we determine    
 
   ,00 =x
(

 00 =x
) ,  ,000 =− xx

()
 

   ,201.01 =x
(

 ,351.01 =x
)

 ,150.011 =− xx
()

 
   ,231.02 =x
(

 ,456.02 =x
)

 ,225.022 =− xx
()

 
   .476.03 =x

(  ,851.03 =x
)

 ,375.033 =− xx
()

 
   785.04 =x

(  31.14 =x
)  .525.044 =− xx

()             (80) 
 
From the above, as according to (79), the inequality 
(55) takes the form  
 
   ,215.0<− II xx

()
                                                  (81) 

 
it follows that the largest value }4,3,2,1,0{∈I  such 
that this inequality holds is .1=I  
Therefore, we fix the optimal solution that maximize 
linear function (77) according to the rule (57). 
Namely, we get  
 
   ,351.0

11
== xx

)
&  

   
2

11

2
ˆ xxxyx

(()
& ++−=  

        ,095.0030.0201.0351.0215.0 =++−=  
   ,245.033 == xx

(
&  .309.044 == xx

(
&                           

 
Finally, after making the inverse to (74) substitution, 
we get the optimal transient probabilities  
 
   ,351.0

11
== xp &&  ,095.0

22
== xp &&   

   ,245.033 == xp &&  ,309.044 == xp &&                     (82) 
that maximize the exemplary system mean lifetime 

)2(µ  in the reliability state subset }3,2{  expressed 
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by the linear form (71) giving, according to (60) and 
(82), its optimal value  
 
   )2(µ&  +⋅= 00.251p& +⋅ 88.142p& 04.133 ⋅p&         

            04.74 ⋅+ p&  
            +⋅= 00.25351.0 +⋅ 88.14095.0 04.13245.0 ⋅  
            07.7309.0 ⋅+ ≅ 15.56.                              (83) 
 
Substituting the optimal solution (82) into the 
formula (61), we obtain the optimal solution for the 
mean values of the exemplary system unconditional 
lifetimes in the reliability state subsets }3,2,1{  and 

},3{ that are as follows  
 
   )1(µ&  +⋅= 78.271p& +⋅ 27.162p& 82.143 ⋅p&  

            72.74 ⋅+ p&  
            +⋅= 78.27351.0 +⋅ 27.16095.0 82.14245.0 ⋅  
            72.7309.0 ⋅+ ≅ 17.31,                              (84) 
 
   )3(µ&  +⋅= 73.221p& +⋅ 71.132p& 48.113 ⋅p&  

             47.64 ⋅+ p&  
             +⋅= 73.22351.0 +⋅ 71.13095.0 48.11245.0 ⋅  
             47.6309.0 ⋅+ ≅ 14.09                              (85) 
 
and according to (64), the optimal values of the mean 
values of the system unconditional lifetimes in the 
particular reliability states 1, 2 and 3, respectively are  
 
   75.1)2()1()1( =−= µµµ &&& ,      

   ,47.1)3()2()2( =−= µµµ &&&    

   .09.14)3()3( == µµ &&                                           (86) 
 

Moreover, according to (62)-(63), the corresponding 
optimal unconditional multistate reliability function 
of the system is of the form   
 
   ),( ⋅tR&  = [1, )1,(tR& , )2,(tR& , )3,(tR& ]               (87) 
 
for ,0≥t  with the coordinates given by  
       
   )1,(tR& )1()]1,([351.0 tR⋅= )2()]1,([095.0 tR⋅+                  

              )3()]1,([245.0 tR⋅+ ,)]1,([309.0 )4(tR⋅+        

   )2,(tR& )1()]2,([351.0 tR⋅= )2()]2,([095.0 tR⋅+  

               )3()]2,([245.0 tR⋅+ ,)]2,([309.0 )4(tR⋅+     

   )3,(tR& )1()]3,([351.0 tR⋅= )2()]3,([0095.0 tR⋅+         

               )3()]3,([245.0 tR⋅+ ,)]3,([309.0 )4(tR⋅+   (88) 

 
where ,)]1,([ )(btR  ,)]2,([ )(btR ,)]3,([ )(btR  ,4,3,2,1=b   
are fixed in Section 3. 

The graph of the exemplary system optimal 
reliability function ),( ⋅tR& given by (87)-(88) is 
presented in Figure 6.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6. The graph of the exemplary system optimal 
reliability function ),( ⋅tR& coordinates 
 
As the critical reliability state is r = 2, then the 
exemplary system optimal system risk function, 
according to (65), is given by  
 
   )(tr& = )2,(1 tR&−  for t ≥ 0,                                  (89) 
 
where )2,(tR&

 
is given by (88).  

 
Figure 7. The graph of the exemplary system optimal 
risk function )(tr&  
 
Hence and considering (66), the moment when the 
optimal system risk function exceeds a permitted 
level, for instance δ  = 0.025, is  
 
   τ&= )(δ-1r&  ≅  2.55.                                             (90) 
 
It can be seen that the optimal system reliability 
characteristics given by (87)-(88), (83)-(85), (86), 
(89) and (90) are better than that before optimization 

R&  (t,1) 

R&  (t,2) 

R&  (t,3) 
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given respectively by (40)-(41), (42), (43), (44) and 
(45).   
Substituting the exemplary operation process optimal 
transient probabilities at operation states  
 
   ,351.0

1
=p& ,095.0

2
=p&  ,245.03 =p&  ,309.04 =p&  

 
determined by (82) and the steady probabilities   

 
   ,236.01 ≅π  ,169.02 ≅π  ,234.03 ≅π ,361.04 ≅π  

 
determined by (9) into (68), we get the following 
system of equations with the unknown optimal mean 
values bM&  of the exemplary system operation 
process unconditional sojourn times at the operation 
states we are looking for  
 
   1153164.0 M&− 2059319.0 M&+ 3082134.0 M&+  

   4126711.0 M&+  = 0 

   102242.0 M& 2152945.0 M&− 302223.0 M&+  

   4034295.0 M&+  = 0 

   105782.0 M& 2041405.0 M&+ 317667.0 M&−  

   4088445.0 M&+  = 0 

   1072924.0 M& 2052221.0 M&+ 3072306.0 M&+  

   4249451.0 M&−  = 0.                                            (91) 
 
The determinant of the main matrix of the above 
homogeneous system of equations is equal to zero 
and therefore there are non-zero solutions of this 
system of equations that are ambiguous and 
dependent on one or more parameters. Thus, we may 
fix some of them and determine the remaining ones. 
To show the way of solving this system of equations, 
we may suppose that we are arbitrarily interested in 
fixing the value of 4M&  and we put 

.4004 =M& Further, substituting this value into the 
system of equations (91), we get  

 
   1153164.0 M&− 2059319.0 M&+ 3082134.0 M&+  
    = -50.6844 
   102242.0 M& 2152945.0 M&− 302223.0 M&+   
   = -13.7180 
   105782.0 M& 2041405.0 M&+ 317667.0 M&−   
   = -35.3780 
   1072924.0 M& 2052221.0 M&+ 3072306.0 M&+   
   = 99.7804                             
  
and we solve it with respect to 1M& , 2M&  and 3M& , 
after omitting its last equation. This way obtained 
solutions that satisfy (91), are  

   1M& ≅  689, 2M&  ≅  261,  

   3M&  ≅  487,  .4004 =M&                                      (92) 
 
It can be seen that these solution differ much from 
the values 1M , ,2M  3M and 4M  estimated in 
Section 2  by (8).  
Having these solutions, it is also possible to look for 
the optimal values blM&  of the mean values blM  of 
the exemplary system operation process conditional 
sojourn times at operation states. Namely,  
substituting the values bM&  instead of bM , the 

probabilities 
bl

p  of the exemplary system operation 
process transitions between the operation states given 
in the matrix ][

bl
p  defined by (6) and replacing blM  

by blM&  in  (69), we get the following system of 
equations  
 
   1222.0 M& 1332.0 M&+ 1446.0 M&+ 689=   

   2120.0 M& 2330.0 M&+ 2450.0 M&+ 261=  

   3112.0 M& 3216.0 M&+ 3472.0 M&+ 487=  

   4148.0 M& 4222.0 M&+ 1430.0 M&+ 400=                             
 
with the unknown optimal values blM&  we want to 
find.  
As the solutions of the above system of equations are 
ambiguous, then we fix some of them, say that 
because of practically important reasons, and we find 
the remaining ones. For instance: 
 
- we fix in the first equation ,20012 =M&  50013 =M&  

and we find  ;105414 ≅M&  

- we fix in the second equation ,10021 =M&  

10023 =M&  and we find  ;42224 ≅M&  

- we fix in the third equation ,90031 =M&  50032 =M&  

and we find  ;41534 ≅M&  
- we fix in the fourth equation 

,30041 =M& 50042 =M&  and we find .48743 ≅M&  (93) 
 
It can be seen that these solutions differ greatly from 
the mean values of the exemplary system conditional 
sojourn times at the particular operation states before 
its operation process optimization given by (7). 
Another very useful set of tools, which are much 
more easily applied in practice and which can help in 
planning the operation process of the system are the 
system  operation process optimal mean values of the 
total sojourn times at the particular operation states 
during the system operation time that by the same 
assumpion as in Section 2 is equel to 1=θ year = 365 
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days. Under this assumption, after aplying (70), we 
get the optimal values of the exemplary system 
operation process total sojourn times at the particular 
operation states during 1 year  
 

,5.124365341.0]ˆ[ˆ
111 ≅⋅=== θθ pEM &&&

  

,3.38365105.0]ˆ[ˆ
222 ≅⋅=== θθ pEM &&&   

,4.89365245.0]ˆ[ˆ
333 ≅⋅=== θθ pEM &&&  

8.112365309.0]ˆ[ˆ
444 ≅⋅=== θθ pEM &&&

days,      (94) 
 

that differ much from the values of ,ˆ
1M  ,ˆ

2M  ,ˆ
3

M  

,ˆ
4M  determined by (11). 

In practice, the knowledge of the optimal values of 

,
b

M&  ,
bl

M&  ,ˆ
b

M
&

 given respectively by (92), (93), 
(94), can be very important and helpful for the 
system operation process planning and improving in 
order to make the system operation more reliable.  
The comparison of the values of the exemplary 
system reliability characteristics before the system 
operation process optimization given by (42)-(43) 
and (45) with their values after the system operation 
process optimization respectively given by (83)-(86) 
and (90) justifies the sensibility of the performed 
system operation process optimization.  
From the analysis of the results of the exemplary 
system operation process optimization it can be 
suggested to organize the system operation process 
in the way that causes the replacing (or the 
approaching/convergence to) the conditional mean 
sojourn times 

bl
M  of the system at the particular 

operation states before the optimization given by (7) 
by their optimal values 

bl
M&  after the optimization 

given by (93). However, the suggested change of the 
parameters of the system operation process very 
often is not easy to perform in practice.  
An easier way might be to change the operation 
process characteristics that results in replacing (or 
the approaching/convergence to) the unconditional 
mean sojourn times 

b
M  of the system at the 

particular operation states before the optimization 
given by (8) by their optimal values 

b
M&  after the 

optimization given by (92).   
Practically, the easiest way of the system operation 
process reorganizing might be to replace (or to 

approach/converge to) the total sojourn times 
b

M̂  of 
the system operation process at the particular 
operation states during the operation time 1=θ  year 
before the optimization given by (11)  by their 

optimal values 
b

M
&̂

 after the optimization given by 
(94). 

The evaluation and optimization of the exemplary 
system operating at the varying operation conditions 
reliability are based on the arbitrary assumed input 
data. Therefore, the achieved results may only be 
considered as an illustration of the possibilities of 
applications of the proposed methods and procedures 
to this system operation and reliability analysis, 
prediction and optimization. However, the obtained 
evaluation may be a very useful example in real 
complex technical systems reliability optimization, 
especially during the design and when planning and 
improving the effectiveness of their operation 
processes. 
 
6. Conclusion 

The constructed general model of complex systems’ 
reliability, linking their reliability models and their 
operation processes models and considering variable 
at different operation states their reliability structures 
and their components reliability parameters was 
applied to the reliability evaluation of the exemplary 
system composed of a series-parallel and a series-“m 
out of l” subsystems linked in series. Next, the 
results of this model and the linear programming 
were applied to the optimization reliability and 
operation process of the considered exemplary 
system.  
Presented in this paper tool is useful in reliability and 
operation optimization of a very wide class of real 
technical systems operating at the varying conditions 
that have an influence on changing their reliability 
structures and their components reliability 
parameters. The results can be interesting for 
reliability practitioners from various industrial 
sectors.  
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