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Abstract

Modelling and prediction of the operation and fgility of technical multistate ageing systems rethto their
operation processes called complex systems aréybpesented and applied to prediction of the apen
processes and reliability characteristics of anngtary complex non-homogeneous system composed of a
series-parallel and a serigs'out of I” subsystems linked in series, changing its rdliighstructure and its
components reliability parameters at variable ap@raconditions. Further, the linear programmingieposed

to the operation and reliability optimization ofnaplex technical systems operating at variable djera
conditions. The method consists in determiningap&émal values of limit transient probabilitiesthe system
operation states that maximize the system lifetimnethe reliability state subsets. The proposedhioubtis
practically applied to the operation and reliabibptimization of the considered exemplary comgstem.

1. Introduction operation processes optimization in order to improv

The complexity of the systems’ operation processesthelr reliability [5], [13]-[14], [16], [21], [27].

and their influence on changing in time the systems , .
structures and their components’ reliability 2. Complex system operation modeling

parameters are very often met in real practicesThu we assume that the system during its operation
the practical importance of an approach linking theprocess is taking, v O N, different operation states

system reliability models and the system operation 2 Eurther. we define the svstern operation
processes models into an integrated general model jar Lo b ' y P

reliability assessment of real technical systems igProcessZ(t), tU<O0+w), with discrete operation
evident. The convenient tools for analyzing thesestates from the sefz,z,...,z }Moreover, we

problems are semi-Markov modelling the systems’assume that the system operation procsis a
operation processes [1]-[4], [12], [16]-[17], [2026]  semi-Markov process [3], [12]-[13], [26] with the
and multistate approach to the systems’ religbilit conditional sojourn times, at the operation states
evaluation [6], [10], [21], [29]-[32]. The common : . . _

usage of those two tools in order to construct the® when its next operation §tate;s b,1=12....v, _
joint general system reliability model related ts i P#I. Under these assumptions, the system operation
operation process [7]-[9], [11], [13]-[16], [23]$2  Process may be described by:

and to apply it to the reliability analysis of colew - the vector [p,(0)],, of the initial probabilities
technical systems is briefly presented and apgbed p, (0)=P(Z(0)=2), b=12..,yv, of the system
the reliability evaluation of an exemplary complex gperation proces&(t) staying at particular operation
system. The complex technical systems reliability s¢ates at the moment0:

improvement and decreasing the risk of exceeding a the
critical reliability state are of great value ineth .
industrial practice [16], [18]-[19], [28]. There ear b, =12,....v, b#l, of the system operation process
needed the tools allowing for changing their Z(t) transitions between the operation stazgsand
operation processes after comparing the values of ;

these characteristics with their values beforerthei

matrix [p,], of probabilites p, ,
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- the matrix [H, (t)],, of conditional distribution
functions H,(t)=P(g, <t ), t=0, b,1=12,...v,
b#l, of the system operation procesa(t)
conditional sojourn timeg), at the operation states.
As the mean valueE[g, df the conditional sojourn
times g, are given by

M, =E[6,] =[tdH, (t), bl=12..v, bZl, (1)

then from the formula for total probability, it folvs
that the unconditional distribution functions ofeth

sojourn times 8, b=12,...,v, of the system
operation proces<(t) at the operation stateg
b=12,...v, are given by [3], [16], [21], [26]

H, @) = X p,H, (1), t20, b=12...v.
Hence, the mean value€[d, &f the system

operation procesZ(t) unconditional sojourn times
6, b=12,...v, at the operation states are given by

M, =E[6,] = épme, b=12...v,

where M,, are defined by the formula (1).

The limit values of the system operation process

Z(t) transient probabilities at the particular
operation states, t (9 P(Z(t) = z,) , t0<0,+w),
b=12,...v, are given by [3], [15], [21], [26]

nM
p, = lim p,(t) = ——
2 7M,

, b=12,..v,

®3)

where M, , b=12,...,v, are given by (2), while the

steady probabilitiesz, of the vector[z] , satisfy
the system of equations

[7,]1=[7]p,]

v (4)

27 =1
Other interesting characteristics of the system

operation procesZ (t) possible to obtain are its total

the particular operation statez for sufficiently
large operation timed, have approximately normal

distributions with the expected value given by
M, = E[6,]= p,6, b=12,....v, (5)
where p, are given by (3).

Example
We consider a series systesi composed of the
subsystemsS and S,, with the scheme showed in

Figure 1

S, S,

Figure 1 The scheme of the exemplary system
reliability structure  (6)

We assume that the subsyst&nis a series-parallel
system with the scheme given kigure 2 and the
subsystemS, illustrated in Figure 3 is either a
series-parallel system or a series-“2 out of 4texys

1 1
El(l) 2) El(Z) — ] Ef:;)o
1) (&)
Ez(ll) EZ(Z) _ ] Ezso
Figure 2 The scheme of the subsyst&nreliability
structure
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Figure 3 The scheme of the subsystesn reliability
structure

sojourn timeséb at the particular operation states The subsystemsS and S, are forming a general
2

z,, b=12,..v, during the fixed system opetation gseries reliability structure of the system preserite
time. It is well known [3], [16], [21], [26] thathe  Figure 1 However, this system reliability structure
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depend on its changing in time operation statef [13 M,, =320 M,, =51Q M, =44Q 7)
[16], [26].

Under the assumption that the system operationryis way, the exemplary system operation process is
conditions are changing in time, we arbitrarily "t gefined and we may find its main characteristics.
number of the system operation process stateg Namely, applying (2), (6) and (7), the unconditiona

and we distinguish the following as its operation mean sojourn times at the particular operatiorestat
states: are:

* an operation state — the system is composed of
the subsystemS with the scheme showed in M, =2815 M, =730,
Figure 2that is a series-parallel system, M, =4215 M, =4095. (8)
* an operation state, — the system is composed of
the subsystemS, with the scheme showed in Further, according to (4), after considering (6 w
Figure 3that is a series-parallel system, find the steady probabilities
* an operation statez, - the system is a series

system with the scheme showed Higure 1 7, L0216 7, L0191

composed of the subsystenss and S, that are n, L0237 n,C0.356 9)
series-parallel systems with the schemes o _
respectively given ifrigure 2andFigure 3 After considering the result (8) and (9), accordiog

« an operation statez, - the system is a series (3), the limit values of the exemplary system
system with the scheme showed Figure 1 operation process transient probabilitipqt) at the
composed of the subsyste®) and S,, while the ~ operation stateg, are:
subsystems, is a series-parallel system with the
scheme given ifrigure 2 and the subsysters, p, 00.190, p, 00.043
is a series-“2 out of 4” system with the scheme P H10.312 p, [0.455 (10)
given inFigure 3

The influence of the above system operation stateslence, the expected values of the total sojouredim

changing on the changes of the exemplary systeng , b= 1234, of the exemplary system operation

reliability structure is indicated in these opevati , .

states above definitions and illustratedFigures 1- prgcess at the partlgular opera.t|on _Statf"?"
3. Its influence on the system components religbilit P= 1234, during the fixed operation time =1
will be defined in this example continuation in Year = 365 days, after applying (5), amount (insjay

Section 3.

We arbitrarily assume that the probabilitigy of Ml 069.3 I\ﬁ2 015.7,
the exemplary system operation process transitions |\7|3 (11139, |\7|4 166.1. (11)
from operation statez, into the operation state
are given in the matrix below 3. Complex system reliability modeling
0 025 030 045 We assume that the changes of the opergtion sthtes
the system operation procesf) have an influence
- 020 0 025 055 g) On the system multistate components,
[pb|] " ( ) . . . . .1
015 020 O 065 i=12,...,n, reliability and the system reliability
040 025 035 O structure as well. Consequently, we denote the
system multistate componente, i=12,...,n,

We also arbitrarily fix the conditional mean values conditional lifetime in the reliability state sulbse
M, =E[6,], bl = 1234, of the exemplary system {u,u+1,...,Z while the system is at the operation
sojourn times at the particular operation states astate z,b=12,...,v, by T®(u) and its conditional

follows: reliability function by the vector
M., =190 M,, =480 M,, =20Q [R(tDI”=[1, [RED]”, ... [R(tD]”]
M,, =10Q M,, =80, M,, =60,
M,, =870,M,, =480 M,, =30Q with the coordinates defined by
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[R(t,w)]® =P(T® (u) >t|Z(t) =z) system operation process limit transient probadslit
given by (3).

Thus, the mean valug(u) = E[T (u)] of the system
unconditional lifetimeT(u) in the reliability state

subsef{u,u+1,...,z is given by [16], [26]

for t0<0,0), u=12,..,z, b=12,...,v.

The reliability function[R (t,u)]® is the conditional
probability that the componertg lifetime T (u) in
the reliability state subseiu,u+1,...,zZ} is greater )
thant, while the system operation proceX$) is at p(u) Db; Potdy(U), U=12,....2, (15)
the operation state.

Similarly, we denote the system conditional lifetim where M, (u) = E[T® (u)] are the mean values of the

in the reliability state subsdu,u +1,...,2z while the system conditional lifetimes®(u  n the reliability
system is at the operation statg, b=12,...,v,by

T®(u) and the conditional reliability function of the
system by the vector

state subsefu,u+1...,z at the operation statg,,
b=12,...v,given by

[RtD]® =1, [RED]?, ..., [RE 2]"], H, () =I[R(t,u)]“’) dt, u=12.(22) (16)
with the coordinates defined by [REU]®, u=12,..2, b=12,...v, are defined by
[R(t,U)]® = P(T®(u) >t|Z(t) =2) (12) (12) and p, are given by (3). Since the relationships

between the system unconditional lifetimegu) in

for t0<0,00), u=12,...,z, b=12,...v. the particular reliability states and the system
unconditional lifetimesT(u) in the reliability state

The reliability function[R(t,u)]® is the conditional
subsets can be expressed by

probability that the system lifetim&®(u) in the
reliability state subsdiu,u+1,...,Z} is greater that TU=TU)-TU+D, u=01..,z-1
while the system operation proce2f) is at the T(2=T(2)

operation statez, . '
Further, we denote the system unconditional lifetim then we get the following formulae for the mean

in the reliability state subsu,u+1....Z- by T(U)  \aiyes of the unconditional lifetimes of the sysiem
and the unconditional reliability function of the particular reliability states

system by the vector
Au)=pu) -pu+D, u=0L..,z-1,

Rt) =[1, RtYD, ..., Rt,2)], 1(2) = u(2), (17)
with the coordinates defined by where 4(U), u=0L...,z, are given by (15).
— Moreover, ifs(t) is the system reliability state at he
R(t,u) =P(T(u)>1) (13) moment t, t0<0,»),and r,r0{12,...,7}, is the
for t0<0,00), U=12,...,2. system critical reliability state, then the systesk

o function
In the case when the system operation tithes

large enough, the coordinates of the unconditional . - prgt) < 0) =2) = P(T(r) < t <
reliability function of the system defined by (1 0~ L) <FIS0) =2 =PI <1, t0<0,),

given by defined as the probability that the system is i@ th

y subset of states worse than the critical state
R(t,u) 0% p[REW]™ for t20, u=12...2, (14) [1,...2 while it was in the state at th€¥homertt=
0 is given by [16]
where [R(t,u)]”, u=12,...,z,b=12,...v,are the
coordinates of the system conditional reliability
functions defined by (12) arg ,b=12,...,v, are the

r(t) =1- R(t,r), t0<0, ), (18)

where R(t,r) is the coordinate of the system
unconditional reliability function given by (14) rfo
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u=r and if 7 is the moment when the system risk [R"(t,2)]* = exp[-0.0009,
function exceeds a permitted levklthen [R®(t,3)]” = exp[-0.0018, i =12, j=12,...40;

r=r7(9), (19  _the component&®, i =12, j=4142,..60,with

o the conditional reliability function coordinates
wherer (1) , if it exists, is the inverse function of
the risk functiorr(t) given by (18). [R” (t,1)]“ = exp[-0.0011],
R®(t,2)]" = exp[-0.00118,
Example (continuation) ; “(1)( )]m_ Pl 0.00 1ﬂ
In Section 2, it is fixed that the exemplary system [RJ (t'3)_] = exp[-0.0018,

reliability structure and its subsystems and =12 j=4142,...60.

components reliability depend on its changing in

time operation states. Considering the assumption¥hus, at the operational statg, the system is

and agreements of these sections, we assumesthat [fentical with the subsysters, that is a four-state

subsystemsS, v =12, are composed of four-state, series-parallel system with its structure shape

le. z = 3, componentE®, v =12 having the parameters |® =60, 1 =60, and according to

conditional reliability functions given by the vect Ptoposition 1 given in [17], its conditional relikiy
function is given by
[R( 017 = [L, [R”@D]", [R”(¢,2)]",
[R”(t,3)]”], b=1234, [R(t,01” =[L [RED]?, [RE2)], [RE3)]”] (20)

with the exponential co-ordinates fort=0, where

[RY (t,1)]® = exp[-{A ©)]], [R(t)]® = 2exp[-0.054] - exp[-0.108],

[R”(t,2)]” = exp[H{A” ()], [R(t.2)]¥ = 2exp[-0.060t] - exp[-0.12at],

[RY (t,3)]” = exp[HA" (3)]"], [R(t.3)]” =2exp[-0.066] —exp[-0.132].  (21)
different at various operation states, b= 1234, The expected values and standard deviations of the

reliability — state  subsets {123}, {23}, {3},  subsets{123}, {23}, {3} at the operation statg,
respectively calculated from the results given by (21), accaydin
to (16), respectively are:
2@, [A7 @17, [A @), b= 1234
[R(t,1)]® dt C27.78,

@) =]
The influence of the system operation states °
changing on the changes of the system reliability z, (2) = | [R(t,2)]“dt= 25.00,
structure and its components reliability functidas N
as follows. @B =]

At the system operation state, the system is
composed of the series-parallel subsyst8mwith

- o At the system operation state,, the system is
the structure showed ifiigure 2 containing two composed of the series-parallel subsyst8mwith
identical series subsystems k{=2), each P P ystem

composed of sixty components®(= 60, 1 = 60) the structure showed iRigure 3 containing four
identical series subsystems k¥ =4), each

composed of eighty components |?(=80,
11 =80, I{” =80, I{” =80) with the exponential

[R(t,3)]dt £ 22.73. (22)

with the exponential reliability functions. In both
series subsystems of the subsyst&n there are
respectively:

- the componentsE®, i=12, j=12,...40,with reliability functions. In all series subsystemstioé
i, . ’. o subsystens, there are respectively:
the conditional reliability function coordinates _ _
- the componentsE®, i= 1234, j=12,..,40,
[R®(t,1)]” = exp[-0.0008, with the conditional reliability function co-ordites
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[R®(t1)]” = exp[-0.0014, (k® =2), each composed of sixty components
[R®(t,2)]” = exp[-0.0018§, (1 =60, 1;” =60) with the exponential reliability
[R® (t,3)]” = exp[-0.0016), i = 1234, functions. In both series subsystems of the suesyst
i =12,...40 S, there are respectively:
- the componentsE®, =12, j=12,...40, with
- the component€?, i= 1234, j=2122,...40, the conditional reliability function co-ordinates

with the conditional reliability function co-ordites [R® (t1)] = exp[-0.0008,

[R® (t1)] =exp[-0.0018, [R® (t.2)] = exp[-0.0014,

[R? (t,2)]® =exp[-0.0026], [R”(t3)]” = exp[-0.0011], i =12, j=12,... 40
[R?(t,3)]” =exp[-0.0028,i = 12,34,

j =4142,...80. - the componentsEuF“, i =12, j=4142,...60, with

the conditional reliability function co-ordinates

Thus, at the operation state,, the system is o o
identical with the subsysters, that is a four-state [R"(t1)]* = expl-0.0018),

@) @) = ~
series-parallel system with its structure shape [R” (t.2)]” = exp[-0.0014, _
parametersk® = 4, 1 =80, 1 =80, 1\” =80, [RY(t:3)]” = exp[-0.0016, i =12,
| =80, and according to Proposition 1 given in ] =4142,...60.

[17], itsconditional reliability function is given by
Thus, at the operation state, the subsystens, is a
[R(t,D]? =L [RED]?, [R(t,2)]?, [R(t,3)]?] (23) four-state series-parallel system with its struetur
shape parameterg® =2, |® =60, | =60, and
fort= 0, where according to Proposition 1 given in [17], its
conditional reliability function is given by
[R(t1)]? = 4exp[-0.128&] - 6exp[-0.256]

+ 4exp[-0.384t] —exp[-0.512], [RY(t,0]° =1 [RY (D], [RV(t,2)]7,

[R(t,2)]? = 4exp[-0.140t] — 6exp[-0.28(t] [R”(t,3)]”] (26)
+ 4exp[-0.420] —exp[-0.56Q],

[R(t,3)]” = 4exp[-0.152] - 6exp[-0.304] for t= 0, where

+4exp[-0.456t] —exp[-0.60&]. (24) [R® (t1)]® = 2exp[-0.060] - exp[-0.12a1],
The expected values and standard deviations of the [R?(t,2)] = 2exp[-0.068] ~exp[-0.136],

system conditional lifetimes in the reliability a  [R(t:3)]” =2exp[-0.07&] -exp[-0.152].  (27)
subsets{1,23}, {23}, {3} at the operation state ,

calculated from the results given by (24), accaydin The subsystemsS, with the structure showed in
to (16), respectively are: Figure 3, consists of four identical series suleyst
(k® =4), each composed of eighty components
(1 =80,1®=80,1"=80,1=80) with the

1) =] [Rt1)]? dt £16.27,
#. @) i [REtL)] exponential reliability functions given below. Iti a

0, 2) :T [R(t,2)]dt [ 14.88 series subsystems of the subsyst&n there are
’ 0 ’ ’ respectively:
U, 3) :T [R(t,3)]?dt C 13.71. (25) - the componentsE[”, i= 1234, j=12...40,

with the conditional reliability function co-ordites

At the system operation statg, the system is a
series system with the structure showedrigiure 1,
composed of two series-parallel subsystefhsand

S, illustrated respectively iRigure 2andFigure 3
The subsystemS, with the structure showed in
Figure 2 consists of two identical series subsystems

[R® (t1)]© =exp[-0.0016],

[R® (t,2)]® = exp[-0.0011],

[R®(t,3)]” = exp[-0.0018, i = 12,34,
j =12,...40;
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- the componentsEU@, i=1234, j=4142,...80,
with the conditional reliability function co-ordites

[R® (t.1)]” =exp[-0.0014),

[R? (t,2)]® = exp[-0.0016,

[R? (t,3)]” = exp[-0.0018, i = 1234,
j =4142,...80.

Thus, at the operation stare, the subsystens, is a

four-state series-parallel system with its strustur

shape parametersk® =4, |9 =80, | =80,

1® =80, I =80, and according to Proposition 1

given in [17], its conditional reliability functioms
given by

[R(Z)(t, D](3> - [l, [R(Z) (t,l)]m, [R(Z’ (t,2)](3),
[R?(t,3)]“], t=0, (28)

where

[R?(t,1)]® =4exp[-0.096] - 6exp[-0.192]
+ 4exp[-0.288] — exp[-0.384],
[R?(t,2)]® = 4exp[-0.10&] - 6exp[-0.2164]
+ 4exp[-0.324t] - exp[-0.432],
[R?(t,3)]® =4exp[-0.120Q] — 6exp[-0.24(]
+ 4exp[-0.360] —exp[-0.48Q]. (29)

Considering that the system at the operation state

The expected values and standard deviations of the
system conditional lifetimes in the reliability sta
subsets{123}, {23}, {3} at the operation state,,
calculated from the results given by (31), accaydin
to (16), respectively are:

w,@ =] [RtLPdt014.82,

o

1,2 =] [R(t2)]¥dt013.04,

1,3 = [ [R(t,3)]®dt011.48. (32)

o—8 o

At the system operation statg, the system is a

series system with the scheme showedrigure 1,
composed of the subsyste and S, illustrated

respectively inFigure 2 andFigure 3 whereas the
subsystemS is a series-parallel system and the

subsystent, is a series-“2 out of 4” system.

The subsystemS consists of two identical series
subsystems K'“ =2), each composed of sixty
components  I(” =60, I/ =60)  with  the
exponential reliability functions the same as a th
operation statez. Thus, according to (21), the
subsystemS, conditional reliability function at the

operation state, , is given by

[R(t,0]” = [1, [R® 1], [R” (t,2)],
[R” (t,3)]] (33)

is a four-state series system composed of subsgstem
S, and S,, after applying the formulae appearing for t > 0, where
after Definition 3.4 in [16] and (27) and (29)s it

conditional reliability function is given by
[R(t, 017 =[L [REDI?, [RE.2]?, [R(3)]] (30)
for t= 0, where

[R(t,1)]® =8exp[-0.156] —12exp[-0.252]
+8exp[-0.348] —2exp[-0.424]
—-4exp[-0.216a] + 6exp[-0.312]
—4exp[-0.408] + exp[-0.504t],

[R(t,2)]® =8exp[-0.17G] —12exp[-0.284]
+8exp[-0.392t] — 2exp[-0.50Qx]
—4exp[-0.236] + 6exp[-0.344t]
—4exp[-0.452] + exp[-0.56(],

[R(t,3)]® =8exp[-0.196] —12exp[-0.316]
+8exp[-0.436] — 2exp[-0.556a]
—4exp[-0.256] + 6exp[-0.37&]
—4exp[-0.496&] + exp[-0.616&].  (31)

[R®(t,1)]“ = 2exp[-0.054t] — exp[-0.108],
[RY(t,2)]“ = 2exp[-0.06Q] — exp[-0.12Qx],
[R(t,3)]“ = 2exp[-0.066] — exp[-0.132]. (34)

The subsystens, consists of four identical series
subsystems K =4), each composed of eighty
components (¥ =80, 15" =80, 119 =80,

1 =80) with the exponential reliability functions

the same as at the operation stateand is a series-

“2 out of 4” system fn = 2). Thus, at the operation
state z,, the subsystens, is a four-state series-“2

out of 4” system, with its structure shape paramsete
k=4, I¥=80, I”=80, 1!”=80, I\”=80,

and according to Proposition 1 given in [17], its
conditional reliability function is given by

[RP(t,D] =[1 [R®ED1], [R™(t,2)]”,
[R®(.3)]] (35)
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fort= 0, where

[R?(t,1)]“ = 6exp[-0.256] — 8exp[-0.384]
+ 3exp[-0.512],

[R®(t,2)]” = 6exp[-0.280t] — 8exp[-0.42(x]
+ 3exp[-0.56Q1] ,

[R®(t,3)]" = 6exp[-0.304t] —8exp[-0.456]
+3exp- 0.60&]. (36)

Considering that the system at the operation #tate

is a four-state series system composed of subsgstem

S and S,, after applying the formulae appearing

after Definition 3.4 in [16] and (34) and (36), its
conditional reliability function is given by

[R(t,D]“ =[L [RED]?, [R(E,2)]“, [R(t3)]“](37)
for t= 0, where

[R(t,1)]“ = 12exp[-0.310t] — 6exp[—0.364]
—-16exp[-0.43&] +8exp[-0.492]
+ 6exp[-0.566a] —3exp[-0.62(],
[R(t,2)] =12exp[-0.340t] — 6exp[-0.40Q]
—-16exp[-0.48(¢] +8exp[-0.54(]
+ 6exp[-0.620] — 3exp[-0.68(],
[R(t,3)] =12exp[-0.37Q] — 6exp[-0.43&]
—-16exp[-0.522] +8exp[-0.58&]
+6exp[-0.674t] —3exp[-0.74Q]. (38)

The mean values of the system sojourn tif@s in
the reliability state subsets after applying therfiola
(38) and (16), are:

1@ = [RELI®dtO7.72,
1, (2) = [ [R(t,2)]“dt07.04,

1, (3 [R(t,3)]“dt 06.47.

o8 o3

(39)

In the case when the system operation time is larg
enough its unconditional four-state reliability
function is given by the vector

R(t,) =[LRE,D, R(t,2), R(t,3)] fort=0, (40)
where according to (14) and considering the
exemplary system operation process

transient

R(t.D) = p[RED]® + p,[RED]? + p,[R(ED]?
+p,[R(tD]?
=0.190R(t1)]* + 0.043]R(t1)]?
+0.312R(t)]® +0.455R(t1)]“,
R(,2) = p[R(t2)]” + p,[RE2)]? + p,[R(,2)]”
+p,[R(t,2)]
= 0.190[R(t,2)]® + 0.043R(t,2)]®
+0.312[JR(t,2)] +0.455R(t,2)]“,
R(t,3) = p[R(E3)]” + p,[R(t.3)]”
+ p[R(t3)]? + p,[R(E3)]?
= 0.1900JR(t,3)]* + 0.043[R(t,3)]?

+0.312R(t,3)] +0.455R(t3)]“, (41)

where the coordinates[R(t1)]?
[REDI®,  [REDI®, [RE2)], [R(2)]7,
[Rt2)]?,  [RE2]”, [REI)”, [RE3)]?,
[R(t3)]?, [R(t3)]“ are given by (21), (24), (31),
38).

Sl'he) graph of the four-state exemplary system
reliability function is illustrated ifrigure 4

 [RED]?,

R(t,0)
0,8

0,6

R(t,u)

04
R(t,1)

0,2 R(t,

t,2)

T T T 1
20 40 60 t 80

Figure 4 The graph of the exemplary system
reliability function R(t,[) coordinates

The expected values of the system unconditional
lifetimes in the reliability state subsefs2.3} , {23},

?3}, calculated from the results given by (41)

according to (16) and considering (15) and (22%),(2
(32), (39), respectively are:

U =ppy Q) +p i, ) + Pty D+ pypt, @)
=0.190[27.78+ 0.043(1627+ 0.312(14 82
+0.455[ 772 C 14.11,

probabilities at the operation states determined by ,(2) = p, 1, (2) + p, 1, (2) + P,4; (2)

(10), the vector co-ordinates are given respedgtivel
by
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+0.455[ 704 C 12.66, From the linear equation (15), we can see that the
1@ =p i, @ +p, i, A +pM, 3 +p, mean vzilue of the system unconditiqna}l lifetime
= 019002273+ 0.0431371+ 0.312(11 48 M(u), u=12...,7, is determined by the limit values
+0.455 647 C 11.43. (42) of transient probabilitiesp, ,b=12,...,v, of the
system operation process at the operation states
Farther, considering (17) and (42), the mean valuegiven by (3) and the mean valueg, (u, )
of the system unconditional lifetimes in the parée b=12,..v, u=12,..,z of the system conditional
reliability states 1, 2, 3, respectively are: lifetimes in  the reliability —state subsets
_ {u,u+1...,zZ, u=12,...,z given by (16).
HO=pu@® - u2) =145 s L
1) = (2 =12 Therefore, the system lifetime optimization apptoac
ﬁ( )= p(2) - pEd) =123 based on the linear programming [13], [15], [17],
HE) = u(3)=1143. (43) [22]. can be proposed. Namely, we may look for the
corresponding optimal valuep, b=12,...v, of
Since the critical reliability state is= 2, then the the transient probabilitiesy, b=12,...v, of the
system risk function, according to (18), is given b system operation process at the operation states to
maximize the mean valug(u) of the unconditional
system lifetimes in the reliability state subsets
where R(t.2) is given by (41). {u,u+1...,zZ}, u=12,...,z, under the assumption

Hence, by (19), the moment when the system rislghat the ~mean values ,ub(u.,.) b=.l2,....,v, _
function exceeds a permitted level, for instadce Y =12..,2, of the system conditional lifetimes in

r(t) =1-R(,2)fort>0, (44)

0.05, is the reliability state subsets are fixed. As a speamd
practically important case of the above formulated
r=r"YJ)C 2.25. (45)  system lifetime optimization problem, ifr,

r=12,...,z, is a system critical reliability state, we
The graph of the risk functiargt) of the exemplary may look for the optimal valuep, b=12,...,v, of

four-state system operating at the variable camti {1« transient probabilitiesp, b=12,...v, of the

's given inFigure 5 system operation process at the system operation

states to maximize the mean valygr oj the
unconditional system lifetime in the reliabilityas®
subset {r,r+1,..,2, r=212,...,z, under the
assumption that the mean valuesy, (r , )

l .
r(t)

0,8 1

0,6 1 b=12..v, r=12..,z of the system conditional
lifetimes in this reliability state subset are fixe
%1 More exactly, we may formulate the optimization

problem as a linear programming model with the

** objective function of the following form

H(r) = X P, 4, (1) (46)

Figure S The graph of the exemplary system risk tor 4 fixed r 0{1,2,...,2 and with the following
functionr(t)

bound constraints
4. Complex system reliability and operation - - )
optimization p<p<p, b=12..v, 3p, =1 (47)

Considering the equation (14), it is natural touass

that the system operation process has a significarhere 1, (r ), 4,(r)=0, b=12,...,v, are fixed
influence on the system reliability. This influenise mean values of the system conditional lifetimes in
also clearly expressed in the equation (15) for thethe reliability state subsét,r +1,...,z gnd

mean values of the system unconditional lifetinmes i

the reliability state subsets. P, 0<p <landp,,0<p <L p,<p (48)

= b1
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b=12,...,v, Next, we find the largest valueé{01,...,v} such
that
are lower and upper bounds of the unknown transient
probabilitiesp,, b=12,...,v, respectively. X' -x'<y (55)

Now, we can obtain the optimal solution of the

formulated by (46)-(48) the linear programming and we fix the optimal solution that maximize (&0)
problem, i.e. we can find the optimal valugs of  the following way:

the transient probabilitesp, ,b=12,...v, that 1) if I =0, the optimal solution is

maximize the objective function given by (1).

First, we arrange the system conditional lifetime % =Y+X andx =X fori=23...v; (56)
mean valuesy, (r ),b=12,...,v, in non-increasing

order g1, ()=, (2. . . 2 (r), where i) if 0<1 <v, the optimal solution is

bi D{:LZ,,V} fOf | = 1,2,,'/ Xi — x for | = l2,,| , Xl+1 — y_)?l + )v(l +)v(|+1
Next, we substitute andx =x for i=1+21+3..v; (57)

=p,, X=p,, Xx=p, for i=12,..,, 49 . .
X =P X =Py X =P, for 12121 (49) iii) if 1 =v, the optimal solution is
and Yve maximize with respect trq. i,=12,..V, . % =% fori=12,..v. (58)
the linear form (46) that after this transformation

takes the form Finally, after making the inverse to (49) subsiitn}

, we get the optimal limit transient probabilities
p(r) =3 x y (1) (50)
= p, =% for i=12..v, (59)

for a fixedr 0{1,2,...,Z with the following bound

constraints that maximize the system mean lifetime in the

reliability state subsefr,r +1,...,7, defined by the

g o v linear form (46), giving its maximum value in the
X<X<X,i=12,...V, le =1 (51) following form
where p, (r), u,(r)=0, i=12..v, are fixed a(r) = EVZ IR (60)
b=1

mean values of the system conditional lifetimes in
the reliability state subsdt,r +1,...,7Z} arranged in

, : for a fixedr 0{12,...,7} .
non-increasing order and

From the expression (60) for the maximum mean
value 4(r ) of the system unconditional lifetime in

the reliability state subsét,r +1,...,2, replacing in
it the critical reliability stater by the reliability state

are lower and upper bounds of the unknown 4 U=12....,z, we obtain the corresponding optimal
solutions for the mean values of the system

X, 0sx<landx ,h0<X
i=12,...v,

IN

1 X<X, (52)

robabilitiesx , i =12,...,v, respectively. - o : L
P _ HIHESX _ =1 v p Ve unconditional lifetimes in the reliability statebmets
To find the optimal values ok | =12,....v, we {u,u+1...7 of the form
define

X:iXH §=1-% (53) y(u)zglpbyb(u) for u=12,...,z (61)
and Further, according to (13)-(14), the corresponding

optimal unconditional multistate reliability funoti

| | of the system is the vector
X°=0, x’=0 andX =YX, X' =YX (54)

for 1 =12,..v. R(t!m: [1’ R(t,l),, R(t,Z)], (62)
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with the coordinates given by (59) and iz, are steady probabilities determined by
(4) .
R(t,u) oy p.IR(t,u)]® for t=0, (63) Since the system of equations (68) is homogeneous

and it can be proved that the determinant of itsima
matrix is equal to zero, then it has nonzero sofii
and moreover, these solutions are ambiguous. Thus,
if we fix some of the optimal valueld, of the mean
values M of the unconditional sojourn times at the
operation states, for instance by arbitrary fixonge

u=12,...,z

And, by (17), the optimal solutions for the mean
values of the system unconditional lifetimes in the
particular reliability states are

) = 70U — i1(U + -1 7- or a few of them, we may find the values of the
’il(u) ,z.1(u) pu+d, u=t..z-1 remaining once and this way to get the solution of
H(2) = i(2). (64)  this equation.

Having this solution, it is also possible to loak the

Moreover, ~considering (18) and (19), the optimal valuesM,, of the mean values,, of the
corresponding optimal system risk function and the

: . _ onditional sojourn times at the operation states
optimal moment when the risk exceeds a permltteqising the following system of equations
level o, respectively are given by

F(t)=1- R(t,r), t=0, (65) lépblel =M,, b=12...v, (69)
and obtained from (2) by replacinyl, by M, and M,

by M, , were p, are known probabilities of the
system operation process transitions between the
operation stateg, i z, b,1 =12,...,v.

o ) ] ) . _ Another very useful and much easier to be apphied i

if it e_X|sts, is the inverse function of the optinnisk practice tool that can help in planning the operati
function r(t). processes of the complex technical systems are the
Replacing in (3) the limit transient probabilitigs system operation process optimal mean valueseof th

of the system operation process at the operatioiotal system operation process sojourn tin@sat
states by their optimal valuep, maximizing the  the particular operation states b= 12....v, during
mean value y(r) of the system lifetime in the the fixed system operation timé, that can be
reliability states subsdt,r +1...,z defined by (46) obtain by the replacing in the formula (5) the
and the mean valuesM, of the unconditional transient probabilitiesp, at the operation statez,

sojourn times at the operation states by theirhy their optimal valuesp, and resulting in the
corresponding unknown optimal valués, , we get following expession

the system of equations

r=r7(9), (66)

where R(t,r ) is given by (63) foru=r and r™(t),

M '\;;Ib = E[éb] =p,0, b=12,...v. (70)
P, =V7Tb—.b, b=12,...V. (67) | |
2 7TM, The knowledge of the optimal valued, of the
1=1

mean values of the unconditional sojourn times and

. . the optimal valuesM,, of the mean values of the
After simple transformations the above system takes P My

the form conditional sojourn times at the operation states a
_ _ ' the optimal mean vaIuesl§7Ib of the total sojourn
(p,=D)mM, + pr,M, +..+ pr,M, =0 times at the particular operation states during the
|o2;11|\/'|1 +(p, —1);721\/]2 + ...+ pZnVMV =0 fixed system operation time may by the basis for

(68) changing the complex technical systems operation
processes in order to ensure these systems operatio
more reliable.

Example (continuation)
' We consider a series systesi composed of the
p, are optimal transient probabilities determined bysypsystemss, and S,, with the scheme showed in

pvﬂlml + pv”ZMZ +"'+(pv _l)ﬂva :O’

where M, are unknown variables we want to find
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Figures 1-3 This system reliability structure and its and we maximize with respect to i~= 1234, the

components reliability parameters depend on itsjinear form (71) that according to (50)-(51) takies
changing in time operation states with arbitrarily form

fixed the number of the system operation process
states v=4 and their influence on the system

2) =x [2500+ x,[1488+ x,[13.04
reliability indicated in Sections 2-3 where its mai H@) =X % %

reliability characteristics are predicted. +x,[704, {77
To find the optimal values of those system reliapil _ _ _
characteristics, we conclude that the objectiveWith the following bound constraints
function defined by (46), in this case, as the
exemplary system critical stateris= 2, according to 0.201< x, £0.351 0.030<x,<0.103
(42), takes the form 0.245< x, < 0.395, 0.309< x, < 0.459,
4(2) =p,[2500+ p, 1488+ p, 1304 2% =1 (78)
+p, [ 704. 1§7
According to (53), we calculate
Arbitrarily assumed, the lowemp, and upperp, \
bounds of the unknown optimal values of transient X=2XX =0.785
probabilities p,, b= 1234, respectively are: y=1-x =1- 0.785=0.215 (79)
p,=0.201, p, = 003, and according to (54), we determine
p, = 0.245, p, = 0.3009,
p, =0.351, p, = 0.105, X'=0, X'=0, X'-X’=0,
ﬁg — 0395, ’pA =0.4509. (72) X = 0201 X = 0351 X =X = 0150,
x?=0.23] x*=0456 x*-x°=0.225
Therefore, according to (47), we assume the X' =0.476. X’=0.85] X’-Xx’=0.375
following bound constraints x*=0.785 x*=131 x*-X*=0.525. (80)

0.201< p,<0.351 0.030< p, <0.105
0.245< p, < 0.395, 0.309< p, < 0.459,

>p,=1

From the above, as according to (79), the inegualit
(55) takes the form (30)
(73)

X -X' <0215 (81)

it follows that the largest valuel {01,234} such

that this inequality holds is = 1.

Therefore, we fix the optimal solution that maximiz
linear function (77) according to the rule (57).
Namely, we get

Now, before we find optimal valueg, of the
transient probabilitiegp, b= 1234, that maximize
the objective function (71), w arrange the system
conditional lifetime mean values, (2h= 1234,
in non-increasing order
X =% =0.351,
X,=y=-xX"+X"+X,

= 0.215-0.351+ 0.201+ 0.030= 0.095
X, = X, =0.245, x, =X, =0.309

(2= 1,22 s (2) 2 1, (2.

Further, according to (49), we substitute

= 1 = ) = i) = 1 74 . - - -
XZP % TP %P XD (74) Finally, after making the inverse to (74) substitof
and we get the optimal transient probabilities
H, =% =035 p,=x =0.095
% =P, =020L % =p,=0030 oy - 0242 . —);2 - 0309 (82)
%, = P, =0.245, X, = p, =0.309; (75) P =% = 2ot B % = 2 o
o o that maximize the exemplary system mean lifetime
X =p,=0351, x, = p, =0.105, £(2) in the reliability state subsép,3} expressed
X =P, =0.395, X, = p, = 0459 (76)
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by the linear form (71) giving, according to (6@)a
(82), its optimal value

4(2) = p,[2500+ p, 1488+ p, 1304
+p, [ 704
= 035112500+ 0.095[1488+ 0.245[13 04
+0.309[ 707 [ 15.56. (83)

Substituting the optimal solution (82) into the
formula (61), we obtain the optimal solution foeth

mean values of the exemplary system unconditional | *

lifetimes in the reliability state subse{$,23} and
{3}, that are as follows

L) = p, [2778+ p,[1627+ p, 1482
+p, [ 772
= 03512778+ 0.095(1627+ 0.245[14 82
+0.3090 772 [ 17.31, (84)

[(3) = p,[2273+ p,[1371+ p, (1148
+p, [ 647
= 035112273+ 0.095[1371+ 0.245[11 48
+0.309[ 647 [ 14.09 (85)

and according to (64), the optimal values of thame

The graph of the exemplary system optimal

reliability function R(t,)igiven by (87)-(88) is
presented ifrigure 6

1,
0,94}
0,8
0,7
0,6

100 t 150

Figure & The graph of the exemplary system optimal
reliability function R(t,)lcoordinates

As the critical reliability state is = 2, then the
exemplary system optimal system risk function,
according to (65), is given by

F(t)=1-R(,2) fort=0, (89)

values of the system unconditional lifetimes in thehere R { ,2)is given by (88).

particular reliability states 1, 2 and 3, respeginare

H@) = @) - (1(2) = 175,
1) = i) - Q) =147,

(3) = j1(3) =14.09. (86)

Moreover, according to (62)-(63), the corresponding

optimal unconditional multistate reliability funoti
of the system is of the form

Rt =[1R¢D, RE.2), RE.3)] (87)

for t = 0, with the coordinates given by

Rt.) = 0.3510R(t1)]” +0.095R(t1)]
+0.245[R(t1)]® +0.3090IR(t,1)]*,

R ¢,2) = 0.351JR(t,2)]® + 0.095[R(t,2)]?
+0.245[R(t,2)]® +0.309[R(t,2)] ",

R ¢,3) = 0.351R(t,3)]” + 0.0095[R(t,3)]®
+0.245[JR(t,3)]° +0.309R(t,3)]“, (88)

where [R(t1)]”, [R(t,2)]™, [R(t3)]”, b= 1234,
are fixed in Section 3.

0,9 -
03 -
07
06 -

<05 |
04 -
03 -
02 -
0,1 -

100 t 150

Figure 7. The graph of the exemplary system optimal
risk function (t)

Hence and considering (66), the moment when the

optimal system risk function exceeds a permitted

level, for instance = 0.025, is
r=r"*() L 2.55. (90)

It can be seen that the optimal system reliability

characteristics given by (87)-(88), (83)-(85), (86)
(89) and (90) are better than that before optirorat
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?ivin respectively by (40)-(41), (42), (43), (44da M, [ 689,M, [ 261,
45). . .
Substituting the exemplary operation process optima M, L 487, M, =400 (92)

transient probabilities at operation states _ ]
It can be seen that these solution differ much from

b, =0.351, p, =0.095 p, =0.245 p, =0.309 the valuesM,, M,, M,and M, estimated in
Section 2 by (8).
determined by (82) and the steady probabilities Having these solutions, it is also possible to ltmk
the optimal valuesMm , of the mean value$/,, of
n C0236 n,C0.169 7, L0234 n, L 0.361 the exemplary system operation process conditional

sojourn times at operation states. Namely,
determined by (9) into (68), we get the following substituting the valuesM, instead of M, the
system of equations with the unknown optimal meanprobabilities p, of the exemplary system operation

values M, of the exemplary system operation process transitions between the operation states gi
process unconditional sojourn times at the operatio in the matrix[ p, ]defined by (6) and replacini,,

states we are looking for by M, in (69), we get the following system of
. . . equations
—0.15316M, + 0.0593194, + 0.082134M,
+0.12671M, =0 022M , + 032M , + 046M , = 689
0.0224M, ~0.1529484, + 0.0222M , 020M,, + 030M ,, + 050M ,, = 261
+0.034298, =0 012M,,, + 016M,, + 072M ,, = 487
0.0578M, +0.0414084, - 0.17667M, 048M ,, + 022M ,, + 030M,, = 400
+0.08844%, =0 .
0072924/, + 0.05222M , + 0.072306M , vyith the unknown optimal valuelsl,, we want to
~0.24945M , = 0. 1o find

As the solutions of the above system of equatioas a
ambiguous, then we fix some of them, say that

The determinant of the main matrix of the abovepecause of practically important reasons, and me fi
homogeneous system of equations is equal to zerg,e remaining ones. For instance:

and therefore there are non-zero solutions of this
system of equations that are ambiguous and we fix in the first equatiori\)llz =200 M., =500

dependent on one or more parameters. Thus, we may _ .

fix some of them and determine the remaining onesand we find M,, 11054

To show the way of solving this system of equations - we fix in the second equatiod ,, =10Q
we may suppose that we are arbitrarily interested i M., =100 and we find M24 1422

fixing the wvalue of M, and we put o ) - .
. o _ _ - we fix in the third equatiotM,, =900 M, =500
M, =40QFurther, substituting this value into the _ :
and we find M ,, 0415 ;

system of equations (91), we get . .
- we fix in the fourth equation

- 0.15316M, +0.059319, + 0.08213M, M,, =300 M,, =500 and we findM ,, 487 .(93)

=-50.6844

0.02242M1 _ 0_1529455/-'2 +002223\, It can be seen that these solutions differ grdadi;m

the mean values of the exemplary system conditional

- '13'7130 . , sojourn times at the particular operation statderbe
0.0578M, +0.0414081, - 0.1766M , its operation process optimization given by (7).
=-35.3780 Another very useful set of tools, which are much
0-07292‘M1 +0.05222M , +0.072306M , more easily applied in practice and which can lrelp

planning the operation process of the system are th
system operation process optimal mean valueseof th
L . . : total sojourn times at the particular operatiortesta

and we solve it with respect t™,, M, and M,, during the system operation time that by the same

solutions that satisfy (91), are

=99.7804

104



Journal of Polish Safety and Reliability Associatio
Summer Safety and Reliability Seminafslume 5, Number 1, 2014

days. Under this assumption, after aplying (70), weThe evaluation and optimization of the exemplary
get the optimal values of the exemplary systemsystem operating at the varying operation condition

operation process total sojourn times at the pdatic
operation states during 1 year

,=E[8,] = p,d =0.245[365189.4,
M, = E[§,] = p,6 = 0309036501128 days, (94)
that differ much from the values d&fl,, M,, M_,

A

M,, determined by (11).

In practice, the knowledge of the optimal values of
M., M,, M, given respectively by (92), (93),
(94), can be very important and helpful for the

system operation process planning and improving
order to make the system operation more reliable.

reliability are based on the arbitrary assumed tinpu
data. Therefore, the achieved results may only be
considered as an illustration of the possibilitads
applications of the proposed methods and procedures
to this system operation and reliability analysis,
prediction and optimization. However, the obtained
evaluation may be a very useful example in real
complex technical systems reliability optimization,
especially during the design and when planning and
improving the effectiveness of their operation
processes.

6. Conclusion

The constructed general model of complex systems’
reliability, linking their reliability models andheir
operation processes models and considering variable
at different operation states their reliabilityustiures

IMnd  their components reliability parameters was

applied to the reliability evaluation of the exeanyl

The comparison of the values of the exemplarysystem composed of a series-parallel and a series-*

systemreliability characteristics before the system
operation process optimization given by (42)-(43)
and (45) with their values after the system openati
process optimization respectively given by (83)}(86
and (90) justifies the sensibility of the performed
system operation process optimization.

out of I” subsystems linked in series. Next, the

results of this model and the linear programming
were applied to the optimization reliability and

operation process of the considered exemplary
system.

Presented in this paper tool is useful in religp#ind

From the analysis of the results of the exemplary,eration optimization of a very wide class of real

system operation process optimization it can be yocpnical systems operating at the varying conuitio
suggested to organize the system operation proCe§fai have an influence on changing their reliapilit

in the way that causes the replacing (or the

approaching/convergence to) the conditional mea
sojourn timesM,, of the system at the particular
operation states before the optimization giventy (
by their optimal valuesM,, after the optimization

'barameters. The

structures and their components reliability
results can be interesting for
reliability practitioners from various industrial

sectors.

given by (93). However, the suggested change of th&eferences
parameters of the system operation process Vepy| Ferreira, F. & Pacheco, A. (2007). Comparison

often is not easy to perform in practice.

An easier way might be to change the operation

process characteristics that results in replacorg (

the approaching/convergence to) the unconditionc’[lb]

mean sojourn timesM, of the systemat the

particular operation states before the optimization

given by (8) by their optimal valuedl, after the
optimization given by (92).
Practically, the easiest way of the system operatio

process reorganizing might be to replace (or to

approach/converge to) the total sojourn tirm&§ of
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